能源转型的宏观经济效应——基于DSGE和面板模型的双重检验

李永武, 王宝玲, 王雅实, 汪寿阳

系统工程理论与实践 ›› 2023, Vol. 43 ›› Issue (11) : 3069-3089.

PDF(964 KB)
PDF(964 KB)
系统工程理论与实践 ›› 2023, Vol. 43 ›› Issue (11) : 3069-3089. DOI: 10.12011/SETP2022-0400
论文

能源转型的宏观经济效应——基于DSGE和面板模型的双重检验

    李永武1, 王宝玲1, 王雅实2, 汪寿阳3
作者信息 +

Macroeconomic effects of energy transition—A dual test based on DSGE and panel model

    LI Yongwu1, WANG Baoling1, WANG Yashi2, WANG Shouyang3
Author information +
文章历史 +

摘要

在"双碳"目标背景下, 推动经济社会发展绿色低碳转型是一项重大的系统工程. 发展可再生能源和提高能源效率有助于构建更为高效的绿色能源体系, 分析能源转型效果对制定合理的碳排放政策、 完成中长期减排目标, 具有重要的参考价值. 本研究以此为出发点, 首先运用静态面板和动态面板系统GMM (generalized method of moments)估计能源转型、 可再生能源效率和不可再生能源效率对主要宏观经济变量的影响, 其次将中间品生产部门细分为可再生能源生产部门与不可再生能源生产部门, 构建DSGE (dynamic stochastic general equilibrium)模型分析了能源转型冲击、 可再生能源效率冲击和不可再生能源效率冲击对主要宏观经济变量的短期影响, 并分别对比三项冲击在四种情景(无政策、 碳税政策、 碳排放强度政策、 碳排放上限政策)下对变量的影响有何不同. 分析表明: 1)能源转型促使资源在部门间的转移, 可再生能源生产部门产出会增加, 不可再生能源生产部门产出和碳排放会降低; 2)两种能源效率的提高会产生经济扩张效应, 但也会产生能源反弹效应, 增加碳排放; 3)在模拟期后期, 实施碳排放强度政策将促进三项冲击对产出的增长效应, 但也会阻碍能源转型进程中的减排效果、 加剧反弹效应, 碳税政策的实施会抑制两类能源效率冲击对碳排放的反弹效应. 在能源转型过程中应依赖合理的碳排放政策, 制定长期减排目标, 本研究对我国分析能源转型效果具有重要的参考价值.

Abstract

In the context of the "double carbon" target, promoting the green and low-carbon transformation of economic and social development is a major systemic project. Developing renewable energy and improving energy efficiency will help to build a more efficient green energy system. Analyzing the effect of energy transformation has important reference value for formulating a reasonable carbon emission policy and achieving medium and long-term emission reduction targets. This study takes this as a starting point. Firstly, static panel and dynamic panel system generalized method of moments (GMM) are used to estimate the impact of energy transformation, renewable energy efficiency and non-renewable energy efficiency on major macroeconomic variables. Secondly, the intermediate production sector is subdivided into renewable energy production sector and non-renewable energy production sector. The dynamic stochastic general equilibrium (DSGE) model is constructed to analyze the short-term impact of energy transformation impact, renewable energy efficiency impact and non-renewable energy efficiency impact on major macroeconomic variables. The analysis shows that: 1) energy transformation promotes the transfer of resources between sectors, the output of renewable energy production sector will increase, while the output of non-renewable energy production sector and carbon emissions will decrease; 2) The improvement of two kinds of energy efficiency will produce economic expansion effect, but it will also produce energy rebound effect and increase carbon emissions; 3) At the end of the simulation period, the implementation of the carbon emission intensity policy will promote the growth effect of three shocks on output, but will also hinder the emission reduction effect and aggravate the rebound effect in the process of energy transformation. The implementation of the carbon tax policy will inhibit the rebound effect of two types of energy efficiency shocks on carbon emissions. In the process of energy transformation, we should rely on a reasonable carbon emission policy and formulate medium and long-term emission reduction targets. This study has important reference value for China to analyze the effect of energy transformation.

关键词

能源转型 / 能源效率 / 宏观经济效应 / 一般均衡模型

Key words

energy transition / energy efficiency / macroeconomic effects / general equilibrium model

引用本文

导出引用
李永武 , 王宝玲 , 王雅实 , 汪寿阳. 能源转型的宏观经济效应——基于DSGE和面板模型的双重检验. 系统工程理论与实践, 2023, 43(11): 3069-3089 https://doi.org/10.12011/SETP2022-0400
LI Yongwu , WANG Baoling , WANG Yashi , WANG Shouyang. Macroeconomic effects of energy transition—A dual test based on DSGE and panel model. Systems Engineering - Theory & Practice, 2023, 43(11): 3069-3089 https://doi.org/10.12011/SETP2022-0400
中图分类号: F124    F206   

参考文献

[1] 魏宇, 孙应玥, 王瑶, 等. 原油市场与全球绿色经济发展的交互影响研究[J]. 系统工程理论与实践, 2022, 42(7): 1843-1858.Wei Y, Sun Y Y, Wang Y, et al. The interactions between crude oil market and development of global green economy[J]. Systems Engineering—Theory & Practice, 2022, 42(7): 1843-1858.
[2] 王宇倩, 李军祥, 徐敏. 区块链框架下基于前景理论的微网分布式能源协同优化[J]. 系统工程理论与实践, 2022, 42(9): 2551-2564.Wang Y Q, Li J X, Xu M. Collaborative optimization of distributed energy resources in microgrid based on prospect theory under the framework of blockchain[J]. Systems Engineering—Theory & Practice, 2022, 42(9): 2551-2564.
[3] 龚旭, 姬强, 林伯强. 能源金融研究回顾与前沿方向探索[J]. 系统工程理论与实践, 2021, 41(12): 3349-3365.Gong X, Ji Q, Lin B Q. Literature review and frontier direction exploration of energy finance[J]. Systems Engineering—Theory & Practice, 2021, 41(12): 3349-3365.
[4] 柴瑞瑞, 李纲. 可再生清洁能源与传统能源清洁利用: 发电企业能源结构转型的演化博弈模型[J]. 系统工程理论与实践, 2022, 42(1): 184-197.Chai R R, Li G. Renewable clean energy and clean utilization of traditional energy: An evolutionary game model of energy structure transformation of power enterprises[J]. Systems Engineering—Theory & Practice, 2022, 42(1): 184-197.
[5] 宋弘, 孙雅洁, 陈登科. 政府空气污染治理效应评估——来自中国"低碳城市"建设的经验研究[J]. 管理世界, 2019, 35(6): 95-108. Song H, Sun Y J, Chen D K. Assessment for the effect of government air pollution control policy: Empirical evidence from "low-carbon city" construction in China[J]. Journal of Management World, 2019, 35(6): 95-108.
[6] Borenstein S, Bushnell J, Wolak F A, et al. Expecting the unexpected: Emissions uncertainty and environmental market design[J]. American Economic Review, 2019, 109(11): 3953-3977.
[7] 陈晓红, 王钰, 李喜华. 环境规制下区域间企业绿色技术转型策略演化稳定性研究[J]. 系统工程理论与实践, 2021, 41(7): 1732-1749. Chen X H, Wang Y, Li X H. Research on green technology transformation strategy of inter-regional enterprises under environmental regulation based on evolutionary game theory[J]. Systems Engineering—Theory & Practice, 2021, 41(7): 1732-1749.
[8] Taminiau J, Byrne J, Kim J, et al. Infrastructure-scale sustainable energy planning in the cityscape: Transforming urban energy metabolism in East Asia[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10(5): 1-15.
[9] 周继儒, 李军祥, 何建佳, 等. 基于区块链的微网与大电网合作博弈研究[J]. 系统工程理论与实践, 2021, 41(8): 2090-2100.Zhou J R, Li J X, He J J, et al. Cooperative game between microgrid and bulk power grid on blockchain[J]. Systems Engineering—Theory & Practice, 2021, 41(8): 2090-2100.
[10] 周晓光, 汤心萌. 时空一致视角下异质性环境规制与绿色经济效率[J]. 系统工程理论与实践, 2022, 42(8): 2114-2128.Zhou X G, Tang X M. Heterogeneous environmental regulation and green economic efficiency from the perspective of spatiotemporal consistency[J]. Systems Engineering—Theory & Practice, 2022, 42(8): 2114-2128.
[11] 朱庆缘, 董学平, 张珂铜, 等. 可再生能源电力配额指标动态分配机制研究[J]. 系统工程理论与实践, 2022, 42(4): 967-980.Zhu Q Y, Dong X P, Zhang K T, et al. Renewable clean energy and clean utilization of traditional energy: An evolutionary game model of energy structure transformation of power enterprises[J]. Systems Engineering—Theory & Practice, 2022, 42(4): 967-980.
[12] 赵振宇, 张垚, 樊伟光. 基于"资源-项目-需求"链的分布式可再生能源项目适应度研究[J]. 系统科学与数学, 2021, 41(8): 2217-2233.Zhao Z Y, Zhang Y, Fan W G. Research on the fitness of distributed renewable energy project based on "resource-proiect-demand" chain[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(8): 2217-2233.
[13] 张宁, 张维洁. 中国用能权交易可以获得经济红利与节能减排的双赢吗?[J]. 经济研究, 2019, 54(1): 165-181. Zhang N, Zhang W J. Can energy quota trading achieve win-win development for economic growth and energy savings in China?[J]. Economic Research Journal, 2019, 54(1): 165-181.
[14] 杨子晖, 陈里璇, 罗彤. 边际减排成本与区域差异性研究[J]. 管理科学学报, 2019, 22(2): 1-21. Yang Z H, Chen L X, Luo T. Marginal cost of emission reduction and regional difference[J]. Journal of Management Sciences in China, 2019, 22(2): 1-21.
[15] De Groote O, Verboven F. Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems[J]. American Economic Review, 2019, 109(6): 2137-2172.
[16] 齐绍洲, 李杨. 能源转型下可再生能源消费对经济增长的门槛效应[J]. 中国人口·资源与环境, 2018, 28(2): 19-27. Qi S Z, Li Y. Threshold effects of renewable energy consumption on economic growth under energy transformation[J]. China Population, Resources and Environment, 2018, 28(2): 19-27.
[17] Gozgor G, Lau C K M, Lu Z. Energy consumption and economic growth: New evidence from the OECD countries[J]. Energy, 2018, 153: 27-34.
[18] 崔静波, 杨云兰, 孙永平. 中国燃料乙醇政策的经济福利及其减排效应[J]. 经济学(季刊), 2020, 19(2): 757-776. Cui J B, Yang Y L, Sun Y P. Economic welfare and carbon mitigation effect of ethanol policies in China[J]. China Economic Quarterly, 2020, 19(2): 757-776.
[19] 徐斌, 陈宇芳, 沈小波. 清洁能源发展、 二氧化碳减排与区域经济增长[J]. 经济研究, 2019, 54(7): 188-202. Xu B, Chun Y F, Shen X B. Clean energy development, carbon dioxide emission reduction and regional economic growth[J]. Economic Research Journal, 2019, 54(7): 188-202.
[20] Nordhaus W. Climate change: The ultimate challenge for economics[J]. American Economic Review, 2019, 109(6): 1991-2014.
[21] 杨冕, 徐江川, 杨福霞. 能源价格波动、 高能效资本动态累积与资本-能源替代关系[J]. 系统工程理论与实践, 2021, 41(9): 2284-2299. Yang M, Xu J C, Yang F X. Energy price fluctuations, dynamic accumulation of energy-efficient capital and energy-capital substitutability[J]. Systems Engineering—Theory & Practice, 2021, 41(9): 2284-2299.
[22] 段宏波, 汪寿阳. 中国的挑战: 全球温控目标从2℃到1.5℃的战略调整[J]. 管理世界, 2019, 35(10): 50-63. Duan H B, Wang S Y. From 2℃ to 1.5℃: China's challenges to attain the global warming-limit targets[J]. Journal of Management World, 2019, 35(10): 50-63.
[23] 林伯强, 吴微. 全球能源效率的演变与启示——基于全球投入产出数据的SDA分解与实证研究[J]. 经济学(季刊), 2020, 19(2): 277-298. Lin B Q, Wu W. The implication of global energy efficiency evolution—SDA and empirical study based on global input-output data[J]. China Economic Quarterly, 2020, 19(2): 277-298.
[24] 史丹, 李少林. 排污权交易制度与能源利用效率——对地级及以上城市的测度与实证[J]. 中国工业经济, 2020(9): 5-23.Shi D, Li S L. Emissions trading system and energy use efficiency—Measurements and empirical evidence for cities at and above the prefecture level[J]. China Industrial Economics, 2020(9): 5-23.
[25] Dong K, Sun R, Hochman G, et al. Energy intensity and energy conservation potential in China: A regional comparison perspective[J]. Energy, 2018, 155: 782-795.
[26] 段宏波, 张古鹏, 范英, 等. 基于内生能源效率改进的宏观减排结构分析[J]. 管理科学学报, 2016, 19(7): 10-23. Duan H B, Zhang G P, Fan Y, et al. China's carbon reduction structure: An analysis based on endogenous energy efficiency improvement[J]. Journal of Management Sciences in China, 2016, 19(7): 10-23.
[27] 杨莉莎, 朱俊鹏, 贾智杰. 中国碳减排实现的影响因素和当前挑战——基于技术进步的视角[J]. 经济研究, 2019, 54(11): 118-132. Yang L S, Zhu J P, Jia Z J. Influencing factors and current challenges of CO2 emission reduction in China: A perspective dased on technological progress[J]. Economic Research Journal, 2019, 54(11): 118-132.
[28] 范丹, 付嘉为, 王维国. 碳排放权交易如何影响企业全要素生产率?[J]. 系统工程理论与实践, 2022, 42(3): 591-603. Fan D, Fu J W, Wang W G. How does carbon emission trading influence firm's total factor productivity?[J]. Systems Engineering—Theory & Practice, 2022, 42(3): 591-603.
[29] 朱帮助, 唐隽捷, 江民星, 等. 基于系统动力学的碳市场风险模拟与调控研究[J]. 系统工程理论与实践, 2022, 42(7): 1859-1872. Zhu B Z, Tang J J, Jiang M X, et al. Simulation and regulation of carbon market risk based on system dynamics[J]. Systems Engineering—Theory & Practice, 2022, 42(7): 1859-1872.
[30] 杨翱, 刘纪显, 吴兴弈. 基于DSGE模型的碳减排目标和碳排放政策效应研究[J]. 资源科学, 2014, 36(7): 1452-1461. Yang A, Liu J X, Wu X Y. Carbon reduction targets and effects of emissions policy based on DSGE modeling[J]. Resources Science, 2014, 36(7): 1452-1461.
[31] Xiao B, Fan Y, Guo X. Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach[J]. Energy Economics, 2018, 76: 439-456.
[32] 马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015-2050): 可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28(2): 8-18. Ma L M, Shi D, Pei Q B. Low-carbon transformation of China's energy in 2015-2050: Renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28(2): 8-18.
[33] Huang H, Roland-Holst D, Wang C, et al. China's income gap and inequality under clean energy transformation: A CGE model assessment[J]. Journal of Cleaner Production, 2020, 251. doi: 10.1016/j.jclepro.2019.119626.
[34] Wang Z, Zhang H, Li H, et al. Economic impact and energy transformation of different effort-sharing schemes to pursue 2℃ warming limit in China[J]. Applied Energy 2022, 320. doi: 10.1016/j.apenergy.2022.119304.
[35] Schreiner L, Madlener R. Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany[J]. Energy Economics, 2022, 107. doi: 10.1016/j.eneco.2022.105843.
[36] Zhang S, Yang Y, Wen Z, et al. Sustainable development trial undertaking: Experience from China's innovation demonstration zones[J]. Journal of Environmental Management, 2022, 318. doi: 10.1016/j.jenvman.2022.115370.
[37] Xiao B, Fan Y, Guo X, et al. Effects of linking national carbon markets on international macroeconomics: An open-economy E-DSGE model[J]. Computers & Industrial Engineering, 2022, 169. doi: 10.1016/j.cie.2022.108166.
[38] Cao F, Zhang Y, Zhang J. Carbon tax, economic uncertainty and tourism: A DSGE approach[J]. Journal of Hospitality and Tourism Management, 2021, 49: 494-507.
[39] 余壮雄, 陈婕, 董洁妙. 通往低碳经济之路: 产业规划的视角[J]. 经济研究, 2020, 55(5): 116-132. Yu Z X, Chen J, Dong J M. The road to a low-carbon economy: The perspective of industrial plans[J]. Economic Research Journal, 2020, 55(5): 116-132.
[40] Windmeijer F. A finite sample correction for the variance of linear efficient two-step GMM estimators[J]. Journal of Econometrics, 2005, 126(1): 25-51.
[41] Zhang Y, Shi X, Qian X, et al. Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy[J]. Energy Policy, 2021, 155(1). doi: 10.1016/j.enpol.2021.112374.
[42] 林东杰, 崔小勇, 龚六堂. 金融摩擦异质性、 资源错配与全要素生产率损失.[J]. 经济研究, 2022, 57(1): 89-106. Lin D J, Cui X Y, Gong L T. Financial friction heterogeneity, resources misallocation and TFP loss[J]. Economic Research Journal, 2022, 57(1): 89-106.
[43] 李力, 温来成, 唐遥, 等. 货币政策与宏观审慎政策双支柱调控下的地方政府债务风险治理[J]. 经济研究, 2020, 55(11): 36-49. Li L, Wen L C, Tang Y, et al. Managing the risk of default on local government debt under a two-prongec framework of monetary policy and macro prudential assessment[J]. Economic Research Journal, 2020, 55(11): 36-49.
[44] 肖伯文, 范英.新冠疫情的经济影响与绿色经济复苏政策评估[J].系统工程理论与实践, 2022, 42(2): 273-288. Xiao B W, Fan Y. Economic impact of the COVID-19 epidemic and assessment of green economic recovery policy[J]. Systems Engineering—Theory & Practice, 2022, 42(2): 273-288.
[45] 魏巍, 王赞信, 李冰.能源转型影响中国经济增长潜力的模拟研究——基于"弱可持续性"视角[J]. 中国环境管理, 2020, 12(2): 76-83. Wei W, Wang Z X, Li B. The effects of energy transition on economic growth potential in China—A perspective of weak sustainability[J]. Chinese Journal of Environmental Management, 2020, 12(2): 76-83.
[46] Calvo G A. Staggered prices in a utility-maximizing framework.[J]. Journal of monetary Economics 1983, 12(3): 383-398.
[47] 朱军, 许志伟. 财政分权、 地区间竞争与中国经济波动[J]. 经济研究, 2018, 53(1): 21-34. Zhu J, Xu Z W. Fiscal decentralization, regional fiscal competition and macroeconomic fluctuations in China[J]. Economic Research Journal, 2018, 53(1): 21-34.
[48] 梅冬州, 温兴春. 外部冲击、 土地财政与宏观政策困境[J]. 经济研究, 2020, 55(5): 66-82. Mei D Z, Wen X C. External shocks, land finance and macroeconomic policy dilemmas[J]. Economic Research Journal, 2020, 55(5): 66-82.
[49] 马理, 文程浩.美国利率调整和税率调整的影响与我国应对措施研究[J].经济研究, 2021, 56(1): 172-190. Ma L, Wen C H. Countermeasure proposals to alleviate the impact on China of the U.S. interest rate and tax rate adjustments measures[J]. Economic Research Journal, 2021, 56(1): 172-190.
[50] 林东杰, 崔小勇, 龚六堂.货币政策、 消费品和投资品通货膨胀——基于金融加速器视角[J]. 金融研究, 2019(3): 18-36. Lin D J, Cui X Y, Gong L T. Monetary policy, consumption, and investment goods inflation: A financial accelerator perspective[J]. Journal of Financial Research, 2019(3): 18-36.
[51] Tone K. A slacks-based measure of super-efficiency in data envelopment analysis.[J]. European Journal of Operational Research, 2002, 143(1): 32-41.
[52] Tone K. Dealing with undesirable outputs in DEA: A slacks-based measure (SBM) approach[C]// Presentation at NAPW III, 2004: 44-45.

基金

国家自然科学基金(71932002, 71988101)
PDF(964 KB)

1413

Accesses

0

Citation

Detail

段落导航
相关文章

/