中国金融机构时变关联性测度研究——来自频域视角的新证据

欧阳资生, 周学伟, 谢楠

系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (8) : 2087-2101.

PDF(2064 KB)
PDF(2064 KB)
系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (8) : 2087-2101. DOI: 10.12011/SETP2021-2606
论文

中国金融机构时变关联性测度研究——来自频域视角的新证据

    欧阳资生, 周学伟, 谢楠
作者信息 +

Time-varying connectedness measurement of Chinese financial institutions: New evidence from the frequency domain perspective

    OUYANG Zisheng, ZHOU Xuewei, XIE Nan
Author information +
文章历史 +

摘要

金融机构关联是衡量系统性金融风险的重要指标,厘清金融关联在时域和频域的动态机制,有助于完善我国金融风险防范体系.本文运用时变广义动态因子模型,基于高维视角研究我国35家上市金融机构间的频域关联,并从低频关联和高频关联两方面,探讨了金融机构关联的周期特征.同时,借助相位谱分析方法,构建金融机构时变关联相位图,考察了金融机构关联的“同频共振”效应.研究发现:1)金融机构频域关联具有长周期特征,市场冲击会显著增强金融机构间的长周期关联.2)银行业关联具有顺周期性,证券业、保险业和多元金融业关联具有逆周期性.3)银行业、证券业和保险业存在同相关联,容易发生风险共振,而多元金融业存在异相关联,发生风险共振的可能性较小.

Abstract

The connectedness of financial institutions is a very important indicator to measure systemic financial risks. It has significant impact on financial risk prevention system in China. Especially, understanding the dynamic mechanism in the time domain and frequency domain. This paper uses the time-varying generalized dynamic factor model to explore the cyclical characteristics of financial institution connectedness. At the same time, based on low-frequency and high-frequency, we study the frequency domain connectedness among 35 listed financial institutions in China from a high-dimensional perspective. In addition, this paper applies the phase spectrum analysis method to the connectedness of financial institution. The time-varying phase diagram deepens the understanding of the "same frequency resonance" of financial institutions from the perspective of phase. We find that the low-frequency components can amplify frequency domain connectedness of financial institutions and therefore strengthen low-frequency connectedness of financial institutions by market shocks. Further evidence shows that the banking industry is pro-cyclical, while the securities, insurance and diversified financial industries are counter-cyclical. Overall, our study shows that the connectedness between banking, securities and insurance industries tends to be in phase, whereas the diversified financial industries are hetero-connectedness and the responses to market shocks are heterogeneous.

关键词

金融机构 / 时变关联 / 广义动态因子模型

Key words

financial institution / time-varying connectedness / general dynamic factor model

引用本文

导出引用
欧阳资生 , 周学伟 , 谢楠. 中国金融机构时变关联性测度研究——来自频域视角的新证据. 系统工程理论与实践, 2022, 42(8): 2087-2101 https://doi.org/10.12011/SETP2021-2606
OUYANG Zisheng , ZHOU Xuewei , XIE Nan. Time-varying connectedness measurement of Chinese financial institutions: New evidence from the frequency domain perspective. Systems Engineering - Theory & Practice, 2022, 42(8): 2087-2101 https://doi.org/10.12011/SETP2021-2606
中图分类号: F832   

参考文献

[1] Adrian T, Brunnermeier M K. CoVaR[J]. American Economic Review, 2016, 106(7):1705-1741.
[2] 欧阳资生,莫廷程.基于广义CoVaR模型的系统重要性银行的风险溢出效应研究[J].统计研究, 2017, 34(9):36-43.Ouyang Z S, Mo T C. Research on the risk spillover effect of the systemically importance bank based on a generalized covar model[J]. Statistical Research, 2017, 34(9):36-43.
[3] 李政,鲁晏辰,刘淇.尾部风险网络、系统性风险贡献与我国金融业监管[J].经济学动态, 2019(7):65-79.Li Z, Lu Y C, Liu Q. Tail risk network, systemic risk contribution and China's financial regulation[J]. Economic Perspectives, 2019(7):65-79.
[4] 欧阳资生,杨希特,黄颖.嵌入网络舆情指数的中国金融机构系统性风险传染效应研究[J].中国管理科学, 2022, 30(4):1-12.Ouyang Z S, Yang X T, Huang Y. Research on systemic risk contagion effect of Chinese financial institutions considering network public opinion index[J]. Chinese Journal of Management Science, 2022, 30(4):1-12.
[5] Brownlees C, Engle R F. SRISK:A conditional capital shortfall measure of systemic risk[J]. The Review of Financial Studies, 2017, 30(1):48-79.
[6] Acharya V, Pedersen L H, Philippon T, et al. Measuring systemic risk[J]. The Review of Financial Studies, 2017, 30(1):2-47.
[7] Eckernkemper T. Modeling systemic risk:Time-varying tail dependence when forecasting marginal expected shortfall[J]. Journal of Financial Econometrics, 2018, 16(1):63-117.
[8] 杨子晖,陈雨恬,谢锐楷.我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J].金融研究, 2018(10):19-37. Yang Z H, Chen Y T, Xie R K. Research on systemic risk measures and cross-sector risk spillover effect of financial institutions in China[J]. Journal of Financial Research, 2018(10):19-37.
[9] Berger A N, Cai J, Roman R A, et al. Supervisory enforcement actions against banks and systemic risk[J]. Journal of Banking&Finance, 2022, 140:106222.
[10] Huang X, Zhou H, Zhu H. Assessing the systemic risk of a heterogeneous portfolio of banks during the recent financial crisis[J]. Journal of Financial Stability, 2012, 8(3):193-205.
[11] 苟文均,袁鹰,漆鑫.债务杠杆与系统性风险传染机制——基于CCA模型的分析[J].金融研究, 2016(3):74-91. Gou W J, Yuan Y, Qi X. Leverage and systemic risk contagion mechanism:An analysis based on CCA model[J]. Journal of Financial Research, 2016(3):74-91.
[12] Oh D H, Patton A J. Time-varying systemic risk:Evidence from a dynamic copula model of CDS spreads[J]. Journal of Business&Economic Statistics, 2017, 36(2):181-195.
[13] 王辉,梁俊豪.基于动态因子Copula模型的我国银行系统性风险度量[J].金融研究, 2020(11):58-75. Wang H, Liang J H. Measuring systemic risk of China's banking based on the time-Varying factor copula model[J]. Journal of Financial Research, 2020(11):58-75.
[14] Zhao Z. Dynamic bivariate peak over threshold model for joint tail risk dynamics of financial markets[J]. Journal of Business&Economic Statistics, 2021, 39(4):892-906.
[15] 徐国祥,李波.中国金融压力指数的构建及动态传导效应研究[J].统计研究, 2017, 34(4):59-71.Xu G X, Li B. Study on the construction of China's financial stress index and its dynamic transmission effect[J]. Statistical Research, 2017, 34(4):59-71.
[16] 李敏波,梁爽.监测系统性金融风险——中国金融市场压力指数构建和状态识别[J].金融研究, 2021(6):21-38.Li M B, Liang S. Monitoring systemic financial risks:Construction and state identification of China's financial market stress index[J]. Journal of Financial Research, 2021(6):21-38.
[17] Allen L, Bali T G, Tang Y. Does systemic risk in the financial sector predict future economic downturns?[J]. Review of Financial Studies, 2012, 25(10):3000-3036.
[18] 欧阳资生,李虹宣,刘凤根.中国系统性金融风险对宏观经济的影响研究[J].统计研究, 2019, 36(8):19-31.Ouyang Z S, Li H X, Liu F G. Research on the impact of China's systemic financial risks on the macroeconomy[J]. Statistical Research, 2019, 36(8):19-31.
[19] Zedda S, Cannas G. Analysis of banks'systemic risk contribution and contagion determinants through the leave-one-out approach[J]. Journal of Banking&Finance, 2020, 112:105160.
[20] 黄乃静,于明哲.系统性金融风险指标的比较分析——基于实体经济风险预测的视角[J].系统工程理论与实践, 2020, 40(10):2475-2491. Huang N J, Yu M Z. Comparison analysis of systemic risk measures-A study based on real economic risk forecasting[J]. Systems Engineering-Theory&Practice, 2020, 40(10):2475-2491.
[21] Ouyang Z S, Yang X T, Lai Y Z. Systemic financial risk early warning of financial market in China using attention-LSTM model[J]. The North American Journal of Economics and Finance, 2021, 56:101383.
[22] Billio M, Getmansky M, Lo A W, et al. Econometric measures of connectedness and systemic risk in the finance and insurance sectors[J]. Journal of Financial Economics, 2012, 104(3):535-559.
[23] Diebold F X, Yilmaz K. On the network topology of variance decompositions:Measuring the connectedness of financial firms[J]. Journal of Econometrics, 2014, 182(1):119-134.
[24] 宫晓莉,熊熊,张维.我国金融机构系统性风险度量与外溢效应研究[J].管理世界, 2020(8):65-82. Gong X L, Xiong X, Zhang W. Research on systemic risk measurement and spillover effect of financial institutions in China[J]. Management World, 2020(8):65-82.
[25] Greenwood-Nimmo M, Nguyen V H, Rafferty B. Risk and return spillovers among the G10 currencies[J]. Journal of Financial Markets, 2016, 31:43-62.
[26] Demirer M, Diebold F X, Liu L, et al. Estimating global bank network connectedness[J]. Journal of Applied Econometrics, 2018, 33(1):1-15.
[27] 李绍芳,刘晓星.金融系统压力:指数化测度及其溢出效应研究[J].系统工程理论与实践, 2020, 40(5):1089-1112. Li S F, Liu X X. Financial systemic stress:Index construction and spillover effect measurement[J]. Systems Engineering-Theory&Practice, 2020, 40(5):1089-1112.
[28] Barigozzi M, Hallin M, Soccorsi S, et al. Time-varying feneral dynamic factor models and the measurement of financial connectedness[J]. Journal of Econometrics, 2021, 222(1):324-343.
[29] Barigozzi M, Hallin M. A network analysis of the volatility of high dimensional financial series[J]. Journal of the Royal Statistical Society:Series C (Applied Statistics), 2017, 66(3):581-605.
[30] Barigozzi M, Hallin M, Soccorsi S. Identification of global and local shocks in international financial markets via general dynamic factor models[J]. Journal of Financial Econometrics, 2019, 17(3):462-494.
[31] Qiao H, Su Y. Media coverage and decomposition of stock market volatility:Based on the generalized dynamic factor model[J]. Emerging Markets Finance and Trade, 2020, 56(3):613-625.
[32] 李潇俊,唐攀.基于时变广义动态因子模型的行业间关联性及风险溢出分析[J].统计与信息论坛, 2021, 36(5):59-70. Li X J, Tang P. Analysis on connectedness and risk spillover among industries based on time-varying generalized dynamic factor model[J]. Statistics&Information Forum, 2021, 36(5):59-70.
[33] Khalfaoui R, Boutahar M, Boubaker H. Analyzing volatility spillovers and hedging between oil and stock markets:Evidence from wavelet analysis[J]. Energy Economics, 2015, 49:540-549.
[34] Baruník J, Křehlík T. Measuring the frequency dynamics of financial connectedness and systemic risk[J]. Journal of Financial Econometrics, 2018, 16(2):271-296.
[35] 李政,刘淇,鲁晏辰.主权债务风险跨国溢出研究——来自频域的新证据[J].金融研究, 2020(9):59-77. Li Z, Liu Q, Lu Y C. A study of sovereign debt risk cross-country spillover:New evidence from the frequency domain[J]. Journal of Financial Research, 2020(9):59-77.
[36] Zhang W, Hamori S. Crude oil market and stock markets during the COVID-19 pandemic:Evidence from the US, Japan, and Germany[J]. International Review of Financial Analysis, 2021, 74:101702.
[37] Zhang D, Wu W B. Convergence of covariance and spectral density estimates for high-dimensional locally stationary processes[J]. The Annals of Statistics, 2021, 49(1):233-254.
[38] Chatziantoniou I, Gabauer D, Stenfors A. Interest rate swaps and the transmission mechanism of monetary policy:A quantile connectedness approach[J]. Economics Letters, 2021, 204:109891.
[39] Hallin M, Liška R. Determining the number of factors in the general dynamic factor model[J]. Journal of the American Statistical Association, 2007, 102(478):603-617.
[40] 贾妍妍,方意,荆中博.中国金融体系放大了实体经济风险吗[J].财贸经济, 2020(10):111-128. Jia Y Y, Fang Y, Jing Z B. Does China's financial system amplify risks in the real economy[J]. Finance&Trade Economics, 2020(10):111-128.
[41] 张亦春,王骁玮.金融机构风险关联与行业差异研究——基于股市波动视角[J].国际金融研究, 2021(11):66-75. Zhang Y C, Wang X W. Research on risk correlation and industry difference of financial institutions-Based on the perspective of stock market volatility[J]. Studies of International Finance, 2021(11):66-75.
[42] Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. The Journal of Business, 1980, 53(1):61-65.
[43] 陈少凌,谭黎明,杨海生,等.我国金融行业的系统重要性研究——基于HD-TVP-VAR模型的复杂网络分析[J].系统工程理论与实践, 2021, 41(8):1911-1925. Chen S L, Tan L M, Yang H S, et al. A study on the systemic importance of financial industries:A complex network analysis based on HD-TVP-VAR model[J]. Systems Engineering-Theory&Practice, 2021, 41(8):1911-1925.
[44] Barigozzi M, Hallin M. Generalized dynamic factor models and volatilities:Recovering the market volatility shocks[J]. The Econometrics Journal, 2016, 19(1):33-60.
[45] 梁琪,常姝雅.我国金融混业经营与系统性金融风险——基于高维风险关联网络的研究[J].财贸经济, 2020, 41(11):67-82. Liang Q, Chang S Y. China's universal financial operation and financial systemic risk-A study on high-dimensional risk interconnected network[J]. Finance&Trade Economics, 2020, 41(11):67-82.
[46] 陈昆亭,周炎.防范化解系统性金融风险——西方金融经济周期理论货币政策规则分析[J].中国社会科学, 2020(11):192-203.Chen K T, Zhou Y. Prevent and resolve systemic financial risks-Analysis of the monetary policy rules of western financial business cycle theory[J]. Social Sciences in China, 2020(11):192-203.

基金

国家社会科学基金重点项目"重大突发公共事件冲击下系统性金融风险的测度、传导与预警研究"(21ATJ009);湖南省自然科学基金"经济政策不确定性对系统性金融风险的影响机理、传染效应与应对策略研究"(2021JJ30196)
PDF(2064 KB)

1003

Accesses

0

Citation

Detail

段落导航
相关文章

/