考虑动态功率调节裕度的高比例风电系统水-火-荷分布鲁棒优化调度

杨洪明, 刘俊鹏, 梁芮, 廖圣桃

系统工程理论与实践 ›› 2021, Vol. 41 ›› Issue (9) : 2327-2337.

PDF(1182 KB)
PDF(1182 KB)
系统工程理论与实践 ›› 2021, Vol. 41 ›› Issue (9) : 2327-2337. DOI: 10.12011/SETP2020-1690
论文

考虑动态功率调节裕度的高比例风电系统水-火-荷分布鲁棒优化调度

    杨洪明1, 刘俊鹏1, 梁芮1, 廖圣桃2
作者信息 +

Distributionally robust optimal dispatching of hydro-thermal-load resources for high penetration of wind system with dynamic power regulation margin

    YANG Hongming1, LIU Junpeng1, LIANG Rui1, LIAO Shengtao2
Author information +
文章历史 +

摘要

具有随机性、波动性的风电大规模接入给电网安全调度带来严峻挑战.针对风电反调峰性和不确定性,本文提出考虑动态功率调节裕度的水-火-荷分布鲁棒优化调度方法.首先,针对风电和负荷双重不确定的概率分布难以准确估计的特点,提出净负荷(风电与负荷功率之差)波动速率矩不确定集合刻画系统功率变化的随机性,并结合水、火、荷的功率调节特性,建立系统动态功率调节裕度模型.其次,借助分布鲁棒条件风险价值具有描述尾部概率的良好特性,刻画恶劣风况下系统由于功率调节裕度不足所造成的弃风风险.以系统运行成本和弃风风险成本最小、系统总动态功率调节裕度最大为目标,提出高比例风电消纳的分布鲁棒优化调度模型.通过对偶优化理论将模型转化为易求解的半定规划问题进行计算.所提出的模型可有效提高风电消纳量,保证经济运行的同时,提高了应对净负荷不确定波动的能力.

Abstract

The high penetration of wind power generation poses a great challenge to the power system safety dispatching since they're highly volatile and intermittent. In view of the anti-peak regulation characteristics and uncertainty of wind power, a distributional robust optimal dispatching method of hydro-thermal-load resources for high penetration of wind system with dynamic power regulation margin is proposed in this paper. Firstly, the moment uncertainty set of net load (the difference between wind power and load power) fluctuation rate is proposed to describe the randomness of system power change. Then, the dynamic power regulation margin model of the system is established considering the regulation ability of hydropower, thermal power and load power. Secondly, by means of the distributionally robust conditional value at risk (DR-CVaR) which can describe tail probability well, the risk of wind abandonment caused by the insufficient power regulation margin of the system under severe wind conditions is presented. A distributional robust optimal dispatching model is established to minimize the system operating costs, risk costs of wind abandonment and maximize the total dynamic regulation margin. The model is transformed into a semidefinite programming problem by dual optimization theory. The proposed method can effectively improve the permeation level of wind power, ensure economic operation and improve the ability to response the uncertain fluctuations of net load.

关键词

高比例风电系统 / 动态功率调节裕度 / 分布鲁棒优化 / 条件风险价值

Key words

high penetration of wind system / dynamic power regulation margin / distributionally robust optimization / conditional value at risk (CVaR)

引用本文

导出引用
杨洪明 , 刘俊鹏 , 梁芮 , 廖圣桃. 考虑动态功率调节裕度的高比例风电系统水-火-荷分布鲁棒优化调度. 系统工程理论与实践, 2021, 41(9): 2327-2337 https://doi.org/10.12011/SETP2020-1690
YANG Hongming , LIU Junpeng , LIANG Rui , LIAO Shengtao. Distributionally robust optimal dispatching of hydro-thermal-load resources for high penetration of wind system with dynamic power regulation margin. Systems Engineering - Theory & Practice, 2021, 41(9): 2327-2337 https://doi.org/10.12011/SETP2020-1690
中图分类号: TM732   

参考文献

[1] 李隽. 中国能源转型与"十四五"电力规划研究[EB/OL]. http://news.bjx.com.cn/html/20201201/1119138.shtml.Li J. Research on china's energy transformation and "14th five-year plan" power planning[EB/OL].http://news.bjx.com.cn/html/20201201/1119138.shtml.
[2] 李生虎, 董王朝. 基于NSTPNT的风电系统可靠性对风电预测误差灵敏度[J]. 系统工程理论与实践, 2019, 39(5):1340-1350.Li S H, Dong W C. Reliability sensitivity of wind power system to forecast error using NSTPNT method[J]. Systems Engineering-Theory & Practice, 2019, 39(5):1340-1350.
[3] Sanjari M J, Gooi H B, Nair N C. Power generation forecast of hybrid PV-wind system[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2):703-712.
[4] 马燕峰, 陈磊, 李鑫, 等. 基于机会约束混合整数规划的风火协调滚动调度[J]. 电力系统自动化, 2018, 42(5):127-132+175.Ma Y F, Chen L, Li X, et al. Inductive power and signal synchronous transmission based on parallel paths of fundamental wave and harmonic wave[J]. Automation of Electric Power Systems, 2018, 42(5):127-132+175.
[5] 白杨, 汪洋, 夏清, 等. 水-火-风协调优化的全景安全约束经济调度[J]. 中国电机工程学报, 2013, 33(13):2-9.Bai Y, Wang Y, Xia Q, et al. A full-scenario SCED with coordinative optimization of hydro-thermal-wind power[J]. Proceedings of the CSEE, 2013, 33(13):2-9.
[6] 陈爱康, 胡静哲, 陆轶祺, 等. 梯级水光蓄系统规划关联模型的建模[J]. 中国电机工程学报, 2020, 40(4):1106-1116+1403.Chen A K, Hu J Z, Lu Y Q, et al. Research on corre-lation model of cascade hydro-photovoltaic-pumped storage hybrid generation planning[J]. Proceedings of the CSEE, 2020, 40(4):1106-1116+1403.
[7] Yang H M, Yu Q, Liu J P, et al. Optimal wind-solar capacity allocation with coordination of dynamic regulation of hydropower and energy intensive controllable load[J]. IEEE Access, 2020, 8:110129-110139.
[8] Zhang N, Hu Z G, Shen B, et al. An integrated source-grid-load planning model at the macro level:Case study for China's power sector[J]. Energy, 2017, 126:231-246.
[9] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13):147-158.Lu Z X, Li H B, Qiao Y. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13):147-158.
[10] 苏承国, 申建建, 王沛霖, 等. 基于电源灵活性裕度的含风电电力系统多源协调调度方法[J]. 电力系统自动化, 2018, 42(17):111-122.Su C G, Shen J J, Wang P L, et al. Coordinated dis-patching method for wind-turbine-integrated power system with multi-type power sources based on power flexibility margin[J]. Automation of Electric Power Systems, 2018, 42(17):111-122.
[11] 王洪坤, 王守相, 潘志新, 等. 含高渗透分布式电源配电网灵活性提升优化调度方法[J]. 电力系统自动化, 2018, 42(15):86-93.Wang H K, Wang S X, Pan Z X, et al. Optimized dis-patching method for flexibility improvement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems, 2018, 42(15):86-93.
[12] Lannoye E, Flynn D, O'Malley M. Transmission, variable generation, and power system flexibility[J]. IEEE Transactions on Power Systems, 2015, 30(1):57-66.
[13] 谭忠富, 邢通, 德格吉日夫, 等. 基于CVaR的能源互补联合系统优化配置模型研究[J]. 系统工程理论与实践, 2020, 40(1):170-181.Tan Z F, Xing T, De G, et al. Optimized configu-ration model for energy complementary system based on CVaR[J]. Systems Engineering-Theory & Practice, 2020, 40(1):170-181.
[14] Delage E, Ye Y Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems[J]. Operations Research, 2010, 59(3):595-612.
[15] Yang H M, Zhang Y F, Qiu D, et al. Distributionally robust optimization of controllable load bidding simul-taneously in day-ahead and real-time electricity market[J]. IEEE Transactions on Power Systems, 2018, 33(1):1089-1091.
[16] Rockafellar R, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2:21-41.
[17] Yang H M, Zhang J, Qiu J, et al. A practical pricing approach to smart grid demand response based on load classification[J]. IEEE Transactions on Smart Grid, 2017, 9(1):179-190.
[18] 林俐, 邹兰青, 周鹏, 等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化, 2017, 41(7):21-27.Lin L, Zhou L Q, Zhou P, et al. Multi-angle economic analysis on deep peak regulation of thermal power units with large scale wind power integration[J]. Automation of Electric Power Systems, 2017, 41(7):21-27.
[19] 王若谷, 王建学, 张恒, 等. 水电机组调峰服务的成本分析及实用补偿方法[J]. 电力系统自动化, 2011, 35(23):41-46.Wang R G, Wang J X, Zhang H, et al. A cost analysis and practical compensation method for hydropower units peaking service[J]. Automation of Electric Power Systems, 2011, 35(23):41-46.

基金

国家自然科学基金重点资助项目(71931003,72061147004);湖南省科技厅研究项目(2019WK2011,2019GK5015)
PDF(1182 KB)

594

Accesses

0

Citation

Detail

段落导航
相关文章

/