基于物联网的产品全生命周期质量管理的模式创新与展望

王鸿鹭, 蒋炜, 魏来, 黄文坡

系统工程理论与实践 ›› 2021, Vol. 41 ›› Issue (2) : 475-482.

PDF(729 KB)
PDF(729 KB)
系统工程理论与实践 ›› 2021, Vol. 41 ›› Issue (2) : 475-482. DOI: 10.12011/SETP2020-1118
论文

基于物联网的产品全生命周期质量管理的模式创新与展望

    王鸿鹭1,2, 蒋炜2, 魏来2, 黄文坡3
作者信息 +

Product lifecycle quality management based on the internet of things:Business model innovation and future outlook

    WANG Honglu1,2, JIANG Wei2, WEI Lai2, HUANG Wenpo3
Author information +
文章历史 +

摘要

传统的质量管理理论以产品为核心,聚焦于产品的质量改善,以满足用户需求为导向.物联网时代的到来为质量管理赋予了新的内涵,企业更加关注用户体验的持续改善,从而增加客户的粘性,由此对质量管理的诉求发生了新的变化,也给传统的质量管理理论提出了新的挑战.在此背景下,本文构建了基于物联网的产品全生命周期质量管理体系,以产品全生命周期为主线,详细阐述了该体系的底层技术构架和管理协同构架,并从理论方法、商业实践、当前挑战、研究展望等角度就推动开展基于物联网的产品全生命周期质量管理活动进行了讨论.希望本文的研究不但可以推动质量管理的理论创新,也能为基于物联网的质量管理产业实践和模式创新提供参考.

Abstract

Traditional quality management theories focus on improving the quality of products to meet user needs. However, the arrival of the internet-of-things era has given new connotation to quality management. Nowadays, enterprises pay more attention to continuous improvement of user experience in order to increase the stickiness of customers. As a result, new challenges have been brought to traditional quality management theories. In this background, this paper pioneers the construction of a product life-cycle quality management system based on the internet-of-things. With the product life-cycle as the main line, we elaborate on the underlying technical architecture and management collaborative architecture of the system. Furthermore, from the perspective of theoretical methods, business practices, current challenges, and future research outlook, we discuss the implementation of product life-cycle quality management based on the internet of things. Finally, we hope that this study will not only promote the theoretical innovation of quality management, but also provide a reference for the practice and model innovation of quality management industry based on the internet of things.

关键词

全生命周期 / 质量管理 / 物联网 / 大数据 / 模式创新

Key words

product lifecycle / quality management / internet-of-things / big data / business model innovation

引用本文

导出引用
王鸿鹭 , 蒋炜 , 魏来 , 黄文坡. 基于物联网的产品全生命周期质量管理的模式创新与展望. 系统工程理论与实践, 2021, 41(2): 475-482 https://doi.org/10.12011/SETP2020-1118
WANG Honglu , JIANG Wei , WEI Lai , HUANG Wenpo. Product lifecycle quality management based on the internet of things:Business model innovation and future outlook. Systems Engineering - Theory & Practice, 2021, 41(2): 475-482 https://doi.org/10.12011/SETP2020-1118
中图分类号: C93-0   

参考文献

[1] Montgomery D C. Introduction to statistical quality control[M]. John Wiley & Sons, 2007.
[2] Feigenbaum A V. Total quality-control[J]. Harvard Business Review, 1956, 34(6):93-101.
[3] Walton M. The Deming management method:The bestselling classic for quality management![M]. TarcherPerigee, 1988.
[4] Juran J M, Gryna F M, Bingham R S. Quality control handbook[M]. New York:McGraw-Hill, 1974.
[5] Crosby P B. Quality is free:The art of making quality certain[M]. New York:McGraw-Hill, 1979.
[6] Kano N. Attractive quality and must-be quality[J]. Hinshitsu (Quality, The Journal of Japanese Society for Quality Control), 1984, 14:39-48.
[7] 狩野纪昭, 樊桦. 在全球化中创造魅力质量[J]. 中国质量, 2002(9):32-34.
[8] 任杉, 张映锋, 黄彬彬. 生命周期大数据驱动的复杂产品智能制造服务新模式研究[J]. 机械工程学报, 2018, 54(22):194-203. Ren S, Zhang Y F, Huang B B. New pattern of lifecycle big-data-driven smart manufacturing service for complex product[J]. Journal of Mechanical Engineering, 2018, 54(22):194-203.
[9] 孙新波,钱雨,张明超,等.大数据驱动企业供应链敏捷性的实现机理研究[J].管理世界, 2019, 35(9):133-151+200.
[10] 张公绪, 孙静. 新编质量管理学[M]. 2版.北京:高等教育出版社, 2003.
[11] 成国庆, 周炳海, 李玲. 多设备系统的生产批量, 质量控制与预知维护联合优化[J]. 系统工程理论与实践, 2019, 39(8):2152-2161.Cheng G Q, Zhou B H, Li L. Joint optimization of production quantity, quality control and predictive maintenance for production systems with multiple machines[J]. Systems Engineering-Theory & Practice, 2019, 39(8):2152-2161.
[12] 肖瑞, 刘国华, 陈爱东,等. 不确定时间序列的统计降维方法[J]. 计算机科学, 2014, 41(8):125-129.Xiao R, Liu G H, Chen A D, et al. Statistic reduction for uncertain time series[J]. Computer Science, 2014, 41(8):125-129.
[13] 朱继华, 武俊, 陶洋. 基于覆盖率的传感器优化部署算法[J]. 计算机工程, 2010, 36(3):94-96. Zhu J H, Wu J, Tao Y. Sensor optimal placement algorithm based on coverage rate[J]. Computer Engineering, 2010, 36(3):94-96.
[14] Levin L, Segal M, Shpungin H. Cooperative data collection in ad hoc networks[J]. Wireless Networks, 2013, 19(2):145-159.
[15] Chakraborty S, Chakraborty S, Nandi S, et al. ADCROSS:Adaptive data collection from road surveilling sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2049-2062.
[16] Zou C, Jiang W, Tsung F. A LASSO-based diagnostic framework for multivariate statistical process control[J]. Technometrics, 2011, 53(3):297-309.
[17] Zou C, Wang Z, Zi X, et al. An efficient online monitoring method for high-dimensional data streams[J]. Technometrics, 2015, 57(3):374-387.
[18] Wei Q, Huang W, Jiang W, et al. Real-time process monitoring using kernel distances[J]. International Journal of Production Research, 2016, 54(21):6563-6578.

基金

国家自然科学基金(71531010,71831006,71421002)
PDF(729 KB)

1117

Accesses

0

Citation

Detail

段落导航
相关文章

/