面向网约车平台、司机和乘客三方,利用生灭过程理论及排队论描述了网约车平台中司机状态(空闲-繁忙)转化过程;将网约车价格及平台和司机间的收入分成作为决策变量,建立了司机愿意运营、乘客愿意乘坐的网约车供给与需求函数.在此基础上,面向静态定价策略和动态定价策略,从政府监管角度建立了社会福利最大化模型及其求解算法.为了确保模型能指导或监管网约车平台定价及分成,证明了网约车平台市场均衡的存在性,对比了静态和动态2种定价策略在不同市场规模下的社会福利值.研究结果表明,当市场规模有限时,基于动态定价策略的社会福利始终大于等于静态定价的社会福利;当市场规模趋于无限大时,这2种定价策略的社会福利是相等的.本文所建模型不仅能求解网约车平台的静态和动态最优定价及其分成系数,还能揭示平均乘车时间、司机和乘客选择网约车行为对平台定价策略的影响,从而为网约车平台定价及其监管提供理论依据.
Abstract
For tripartite agents of online ridesourcing platform, drivers and passengers, the queuing theory and the birth and death process theory are used to describe the driver state transition process (idle-busy) in the car-hailing platform. With the ridesourcing price and revenue sharing between ridesourcing platform and driver as decision variables, the supply and the demand functions of driver's willingness to join the ridesourcing operation and the passengers' willingness to ride are both proposed. On this basis, the ridesourcing platform pricing models to maximize the social welfare under the static pricing strategy and the dynamic pricing strategy, are both proposed from angle of government regulation, and the algorithm for solving the model is also designed; In order to ensure that the theoretical model results be able to guide or supervise the pricing of the ridesourcing platform, the existence of market equilibrium of ridesourcing platform are proved, and the social welfares of static pricing strategy and the dynamic pricing strategy are compared. The research results show that the social welfare under dynamic pricing strategy is greater than the one of static pricing strategy under finite market size, while the social welfares under the dynamic and the static pricing strategy is equal under the large-market limit. The proposed model can not only solve the static and the dynamic optimal prices of ridesourcing platform, but also investigate the impacts of average ride time, the behavior of drivers and passengers choosing ridesourcing platform on pricing of the ridesourcing platform, thus provide theoretical foundation for the pricing and supervisation of ridesourcing platform.
关键词
网约车 /
静态定价 /
动态定价 /
排队论 /
社会福利
{{custom_keyword}} /
Key words
ridesourcing /
static pricing /
dynamic pricing /
queuing theory /
social welfare
{{custom_keyword}} /
中图分类号:
U491.25
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴丽萍. "互联网+"背景下专车用工模式劳动关系的认定[J].经济论坛, 2016(5):148-151.Wu L P. Determination of labor relationship in specialized vehicle employment mode under the background of "Internet +"[J]. Economy Forum, 2016(5):148-151.
[2] House.滴滴发布2017年数据:平台4.5亿用户, 共完成74.3亿次出行服务[M/OL]. 中国, 2018[2019-11-30].https://www.adquan.com/post-2-43126.html.
[3] Fellows N T, Pitfield D E. An economic and operational evaluation of urban car-sharing[J]. Transportation Research Part D, 2000, 5(1):1-10.
[4] 常缨征.对移动打车软件价格战的经济学思考[J]. 价格理论与实践, 2014(4):116-118.Chang Y Z. Economic thinking on the price war of mobile taxi software[J]. Price Theory and Practice, 2014(4):116-118.
[5] Schwieterman J P, Bieszczat A. The cost to carshare:A review of the changing prices and taxation levels for carsharing in the United States 2011-2016[J]. Transport Policy, 2017, 57:1-9.
[6] Aloui C, Jebsi K. Optimal pricing of a two-sided monopoly platform with a one-sided congestion effect[J]. International Review of Economics, 2010, 57(4):423-439.
[7] Bimpikis K, Candogan O, Saban D. Spatial pricing in ride-sharing networks[J]. Operations Research, 2018, 67(3):744-769.
[8] Azevedo E M, Weyl E G. Matching markets in the digital age[J]. Science, 2016, 352(6289):1056-1057.
[9] Chen M K. Dynamic pricing in a labor market:Surge pricing and flexible work on the Uber platform[C]//The 2016 ACM Conference, America, 2016.
[10] Cohen P, Hahn R, Hall J. Using big data to estimate consumer surplus:The case of Uber[R]. NBER Working Papers, 2016.
[11] Zha L, Yin Y, Du Y. Surge pricing and labor supply in the ride-sourcing market[J]. Transportation Research Procedia, 2017, 23:2-21.
[12] Santos D O, Xavier E C. Dynamic taxi and ridesharing:A framework and heuristics for the optimization problem[C]//International Joint Conference on Artificial Intelligence, North America, 2013:2885-2891.
[13] Lin Y, Li W, Qiu F, et al. Research on optimization of vehicle routing problem for ride-sharing taxi[C]//International Conference on Traffic & Transportation Studies, China, 2012:494-502.
[14] Long J, Tan W, Szeto W Y, et al. Ride-sharing with travel time uncertainty[J]. Transportation Research Part B:Methodological, 2018, 118:143-171.
[15] Hu L, Liu Y. Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints[J]. Transportation Research Part B:Methodological, 2016, 93:268-299.
[16] Angelopoulos A, Gavalas D, Konstantopoulos C, et al. Incentivized vehicle relocation in vehicle sharing systems[J]. Transportation Research Part C:Emerging Technologies, 2018, 97:175-193.
[17] Banerjee S, Freund D, Lykouris T. Pricing and optimization in shared vehicle systems:An approximation framework[C]//The 2017 ACM Conference, America, 2017.
[18] 王汉斌,岳帅.网约车指导定价模型研究[J].价格月刊, 2016(10):32-36.Wang H B, Yue S. Research on guidance pricing model of online appointment vehicle[J]. Prices Monthly, 2016(10):32-36.
[19] Wang X L, He F, Yang H, et al. Pricing strategies for a taxi-hailing platform[J]. Transportation Research Part E, 2016:212-231.
[20] Luo Q, Saigal R. Dynamic pricing for on-demand ride-sharing:A continuous approach[J]. SSRN Electronic Journal, 2017. doi:10.2139/ssrn.3056498.
[21] Banerjee S, Riquelme C, Johari R. Pricing in ride-share platforms:A queueing-theoretic approach[M/OL]. SSRN Electronic Journal, 2015[2019-11-30]. http://ssrn.com/abstract=2568258.
[22] 赵道致, 杨洁. 考虑不同监管目标的网约车服务价格管制策略研究[J]. 系统工程理论与实践, 2019, 39(10):2523-2534.Zhao D Z, Yang J. Research on the price regulation strategy of online car-hailing considering different regulation targets[J]. Systems Engineering-Theory & Practice, 2019, 39(10):2523-2534.
[23] He F, Shen Z J. Modeling taxi services with smartphone-based e-hailing applications[J]. Transportation Research Part C, 2015, 58:93-106.
[24] Chen L, Xu A, Zhu H. Computation of the geometric measure of entanglement for pure multiqubit states[J]. Physical Review A, 2010, 82(3):9583-9588.
[25] 孟立昕. "让出行更美好"——滴滴出行的商业模式分析[D]. 北京:北京理工大学, 2016.Meng L X. "Let the trip be better"-Analysis of the business model of Didi travel[D]. Beijing:Beijing Institute of Technology, 2016.
[26] 聂晓茜. 成本-收益与网约车运营监管[J]. 时代金融, 2016, 23:295-296.Nie X Q. Cost-benefit and network car operation supervision[J]. Times Finance, 2016, 23:295-296.
[27] 杨耀坤, 张博, 沈万霞. 基于规模化电动车分时租赁动态成本效益建模仿真[J]. 北京工业大学学报, 2019, 45(1):78-84.Yang Y K, Zhang B, Shen W X. Modeling and simulation of dynamic cost-benefit based on time-sharing leasing of large-scale electric vehicles[J]. Journal of Beijing University of Technology, 2019, 45(1):78-84.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61773293);国家社科基金重大项目(13&ZD175);国家社会科学基金(18CJY026,19BJY108)
{{custom_fund}}