本文以2002-2017年我国A股周数据为样本, 首先计算了76个细分行业的股指波动率, 并在此基础上通过高维时变参数向量自回归(HD-TVP-VAR)模型构建了行业之间的全局风险网络. 进一步地, 本文从网络拓扑分析与量化实证分析两个角度考察了金融行业在风险网络中的系统重要性. 研究发现, 1) 我国A股市场各行业间的风险溢出呈现出"唇齿相依"的复杂关联结构, 且风险事件的爆发与金融行业对实体经济行业风险溢出的变化密切相关; 2) 金融行业承担着风险吸收的功能, 其中, 银行业的风险吸收功能最强, 而证券期货业则表现出相对更明显的风险扩散性; 3) 行业关联性增强、行业风险角色向扩散型转化以及风险网络结构均衡性受破坏是系统性金融风险产生的重要根源; 4) 金融行业在全局风险网络中的系统重要性显著强于实体经济行业, 其中, 银行业与证券期货业的系统重要性分居首位与次位; 5) 房地产行业在全局风险网络中发挥着双向风险放大的风险"桥梁"作用; 6) 高杠杆与高流动性会显著刺激金融行业风险扩散的系统重要性, 而大规模与重投资则会显著增强其风险吸收的系统重要性.
Abstract
Employing a weekly sample of Chinese A shares from 2002 to 2017, this paper first computes the sector volatility index for 76 sub-sectors. Based on these indices, a global risk network among sectors is then constructed through a high-dimensional time-varying parameters vector autoregressions (HD-TVP-VAR) model. Afterwards, this paper further examines the systemic importance of financial industries in the risk network from both network topology and empirical analysis perspectives. Results show that, risk spillovers among sectors in Chinese stock market exhibit a complex network structure featured with high connectedness. Specifically, the outbreak of risk events is closely related to the changes in spillover connectedness from financial industries to real economy industries. Second, financial industries play an important role of absorbing risk, with banking being the major risk taker, while the security and future sector being the major risk spreader. Third, the increase in connectedness, transferring from risk-taker to risk-spreader, and the destruction to the stability of network equilibrium are main driving forces underlying systemic financial risk. Forth, financial industries have a greater systematic importance than real economy industries, within which, banking ranks on the top, followed by the security and future sectors. Fifth, real estate sector serves as a risk "bridge" between financial industries and real economy industries which magnifies risk from both sides. Last, high leverage and high liquidity will stimulate risk diffusion, but large scale and heavy investment will help to strengthen risk absorption.
关键词
系统重要性 /
系统性金融风险 /
HD-TVP-VAR模型 /
复杂网络
{{custom_keyword}} /
Key words
systemic importance /
systemic financial risk /
HD-TVP-VAR model /
complex network
{{custom_keyword}} /
中图分类号:
F832
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Kaufman G G. Bank failures, systemic risk, and bank regulation[J]. Cato Journal, 1996, 16:17-45.
[2] Allen F, Gale D. Financial contagion[J]. Journal of Political Economy, 2000, 108(1):1-33.
[3] Acemoglu D, Carvalho V M, Ozdaglar A, et al. The network origins of aggregate fluctuations[J]. Econometrica, 2012, 80(5):1977-2016.
[4] Acemoglu D, Ozdaglar A, Tahbaz-Salehi A. Networks, shocks, and systemic risk[R]. National Bureau of Economic Research, 2015.
[5] Gabaix X. The granular origins of aggregate fluctuations[J]. Econometrica, 2011, 79(3):733-772.
[6] Acharya V, Engle R, Richardson M. Capital shortfall:A new approach to ranking and regulating systemic risks[J]. American Economic Review, 2012, 102(3):59-64.
[7] Billio M, Getmansky M, Lo A W, et al. Econometric measures of connectedness and systemic risk in the finance and insurance sectors[J]. Journal of Financial Economics, 2012, 104(3):535-559.
[8] 范小云, 方意, 王道平. 我国银行系统性风险的动态特征及系统重要性银行甄别——基于CCA与DAG相结合的分析[J]. 金融研究, 2013(11):82-95.Fan X Y, Fang Y, Wang D P. Systemic risk and systemically important financial institutions of China's bank section-An analysis based on CCA and DAG[J]. Journal of Financial Research, 2013(11):82-95.
[9] 梁琪, 李政, 郝项超. 中国股票市场国际化研究:基于信息溢出的视角[J]. 经济研究, 2015, 50(4):150-164.Liang Q, Li Z, Hao X C. The internationalization of Chinese stock market:Based on information spillover[J]. Economic Research Journal, 2015, 50(4):150-164.
[10] Diebold F X, Yilmaz K. On the network topology of variance decompositions:Measuring the connectedness of financial firms[J]. Journal of Econometrics, 2014, 182(1):119-134.
[11] Brownlees C, Engle R F. SRISK:A conditional capital shortfall measure of systemic risk[J]. The Review of Financial Studies, 2016, 30(1):48-79.
[12] Adrian T, Brunnermeier M K. CoVaR[R]. American Economic Review, 2016, 106:1705-1741.
[13] Demirer M, Diebold F X, Liu L, et al. Estimating global bank network connectedness[J]. Journal of Applied Econometrics, 2018, 33(1):1-15.
[14] Korobilis D, Yilmaz K. Measuring dynamic connectedness with large Bayesian VAR models[J]. SSRN Electronic Journal, 2018. https://ssrn.com/abstract=3099725.
[15] 郑挺国, 刘堂勇. 股市波动溢出效应及其影响因素分析[J]. 经济学(季刊), 2018, 17(2):669-692.Zheng T G, Liu T Y. Volatility spillovers across stock markets and its influencing factors[J]. China Economic Quarterly, 2018, 17(2):669-692.
[16] 方意. 主板与中小板, 创业板市场之间的非线性研究:"市场分割"抑或"危机传染"?[J]. 经济学(季刊), 2016, 15(1):373-402.Fang Y. A nonlinear research on the interdependence between the main board and the growth enterprise market (or small and medium-sized enterprise board market):Market segmentation or crisis contagion?[J]. China Economic Quarterly, 2016, 15(1):373-402.
[17] Babus A. The formation of financial networks[J]. The RAND Journal of Economics, 2016, 47(2):239-272.
[18] Cogley T, Sargent T J. Evolving post-world war II U.S. inflation dynamics[J]. NBER Macroeconomics Annual, 2001, 16:331-373.
[19] Cogley T, Sargent T J. Drifts and volatilities:Monetary policies and outcomes in the post WWII U.S.[J]. Review of Economic Dynamics, 2005, 8:262-302.
[20] Primiceri G E. Time varying structural vector autoregressions and monetary policy[J]. The Review of Economic Studies, 2005, 72(3):821-852.
[21] Koop G, Korobilis D. Large time-varying parameter VARs[J]. Journal of Econometrics, 2013, 177(2):185-198.
[22] Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2005, 67(2):301-320.
[23] Pesaran H H, Shin Y. Generalized impulse response analysis in linear multivariate models[J]. Economics Letters, 1998, 58(1):17-29.
[24] Garman M B, Klass M J. On the estimation of security price volatilities from historical data[J]. Journal of Business, 1980, 53(1):67-78.
[25] Li D, Schürhoff N. Dealer networks[J]. The Journal of Finance, 2019, 74(1):91-144.
[26] 杨子晖, 陈雨恬, 谢锐楷. 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J]. 金融研究, 2018(10):19-37.Yang Z H, Chen Y T, Xie R K. Research on systemic risk measures and cross-sector risk spillover effect of financial institutions in China[J]. Journal of Financial Research, 2018(10):19-37.
[27] 周密, 刘秉镰. 供给侧结构性改革为什么是必由之路?——中国式产能过剩的经济学解释[J].经济研究, 2017, 52(2):67-81.Zhou M, Liu B L. Why is supply-side structural reform inevitable?-Economic explanation for Chinese overcapacity[J]. Economic Research Journal, 2017, 52(2):67-81.
[28] 刘斌, 黄坤, 王雷. 谁更愿意去库存:国有还是非国有房地产企业?[J]. 经济研究, 2018, 53(6):112-126.Liu B, Huang K, Wang L. Who is willing to destock, state-owned or non-state-owned real estate enterprises?[J]. Economic Research Journal, 2018, 53(6):112-126.
[29] Chiu W C, Pena J I, Wang C W. Industry characteristics and financial risk contagion[J]. Journal of Banking & Finance, 2015, 50:411-427.
[30] Amihud Y. Illiquidity and stock returns:Cross-section and time series effects[J]. Journal of Financial Markets, 2002, 5:31-56.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
广东省自然科学基金面上项目(2016A030313094, 2019A1515012018); 广东省软科学研究领域(2019A101002015)
{{custom_fund}}