唯物论认为, 客观实在不以人的意识为转移, 因此对于同一实际问题, 不同的评价方法应具有相容性和互补性, 其评价结果趋于基本一致. 以可拓集和可变集为例, 从问题背景、研究方法和哲学底蕴三个方面进行研究, 探讨了二者在理论层面上的相容性; 分析可拓关联函数和可变对立差异函数的数值特征及内在联系, 进而构建了一种基于可拓物元理论和对立差异函数的耦合评价模型. 黑龙江省13个地市的水资源承载力的应用对比研究表明,本文建立的模型与可拓学方法的评价结果基本一致, 且与实际相符, 从而验证了可变集和可拓集在应用层面的相容性. 该模型将对立差异函数引入可拓学评价方法, 不仅可以判定水资源承载力所处的等级, 同时还能反映其相对于相邻等级的强弱程度, 为深入揭示所研系统的特性, 丰富其表达形式提供了支持.
Abstract
Materialism holds that objective reality does not shift by human consciousness. Therefore, for the same practical problem, different evaluation methods should be compatible and complementary, and their evaluation results tend to be basically consistent. Extension sets and variable sets are taken as examples to study the theoretical compatibility between the two from three aspects, i.e. problem context, research methods and philosophical implication. Then, on the basis of analyzing the numerical characteristics and relationship of extension correlation function and variable opposite difference function, a coupling evaluation model based on extension matter element theory and opposite difference function was constructed. A comparative study on the application of water resources carrying capacity in 13 cities in Heilongjiang Province shows that the evaluation results of the model established in this paper are basically consistent with those of the extenics method, and are consistent with the actual situation, thus verifying the compatibility of variable sets and extension sets at the application level. The model introduces the opposite difference function into the extension evaluation method, which can not only determine the level of water resources carrying capacity, but also reflect its strength relative to adjacent levels, which provides support for further revealing the characteristics of the studied system and enriching its expression forms.
关键词
可拓集 /
可变集 /
相容性 /
对立差异函数 /
可拓评价法 /
水资源承载力
{{custom_keyword}} /
Key words
extension set /
variable set /
compatibility /
opposite difference function /
extension evaluation method /
water resources carrying capacity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐泽水,任珮嘉. 犹豫模糊偏好决策研究进展与前景[J]. 系统工程理论与实践, 2020, 40(8):2193-2202.Xu Z S, Ren P J. A survey of decision making with hesitant fuzzy preference relations:Progress and prospect[J]. Systems Engineering-Theory & Practice, 2020, 40(8):2193-2202.
[2] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-357.
[3] 蔡文. 可拓集合和不相容问题[J]. 科学探索学报, 1983(1):83-97.Cai W. Extenics and incompatibility[J]. Journal of Scientific Exploration, 1983(1):83-97.
[4] 杨春燕, 蔡文. 可拓学[M]. 北京:科学出版社, 2014.Yang C Y, Cai W. Extenics[M]. Beijing:Science Press, 2014.
[5] 王丽萍, 叶季平, 苏学灵,等. 基于可拓学理论的防洪调度方案评价研究与应用[J]. 水利学报, 2009, 40(12):1425-1434. Wang L P, Ye J P, Su X L, et al. Evaluation of flood control operation program based on extenics theory and its application[J]. Journal of Hydraulic Engineering, 2009, 40(12):1425-1434.
[6] 汪洪波, 孙晓文, 陈无畏, 等. 基于值域博弈的主动悬架系统H∞可拓控制[J]. 系统工程理论与实践, 2017, 37(9):2431-2439.Wang H B, Sun X W, Chen W W, et al. H∞ extension control for active suspension system based on value domains game[J]. Systems Engineering-Theory & Practice, 2017, 37(9):2431-2439.
[7] 原国红, 陈剑平, 马琳. 可拓评判方法在岩体质量分类中的应用[J]. 岩石力学与工程学报, 2005, 24(9):1539-1544.Yuan G H, Chen J P, Ma L. Application of extenics in evaluating of engineering quality of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9):1539-1544.
[8] 关涛, 余万军, 慎勇扬, 等. 基于可拓评价方法的土地开发整理项目立项决策研究[J]. 农业工程学报, 2005, 21(1):71-75.Guan T, Yu W J, Shen Y Y, et al. Decision-making of land development and consolidation project based on extension evaluation method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(1):71-75.
[9] 王体春,杨爱军,卜良峰. 基于多属性可拓灰关联决策模型的产品方案设计[J]. 系统工程理论与实践, 2013, 33(9):2321-2329.Wang T C, Yang A J, Bu L F. Mechanism scheme design based on multi-attribute extension gray relevant optimized decision-making model[J]. Systems Engineering-Theory & Practice, 2013, 33(9):2321-2329.
[10] 陈守煜. 工程模糊集理论与应用[M]. 北京:国防工业出版社, 1998.Chen S Y. Engineering fuzzy set theory and application[M]. Beijing:National Defense Industry Press, 1998.
[11] 陈守煜. 工程可变模糊集理论与模型——模糊水文水资源学数学基础[J]. 大连理工大学学报, 2005, 45(2):308-312.Chen S Y. Theory and model of engineering variable fuzzy set-Mathematical basis for fuzzy hydrology and water resources[J]. Journal of Dalian University of Technology, 2005, 45(2):308-312.
[12] 陈守煜. 基于可变模糊集的质变与量变定理——兼论集对分析[J]. 数学的实践与认识, 2009, 39(11):195-201.Chen S Y. The change of qualitative and quantitative theory based on variable fuzzy sets-And discuss on SPA[J]. Mathematics in Practice and Theory, 2009, 39(11):195-201.
[13] 陈守煜. 可变集——可变模糊集的发展及其在水资源系统中的应用[J]. 数学的实践与认识, 2012, 42(1):92-101.Chen S Y. Variable sets-The development of variable fuzzy sets and the applications in assessment of water resource[J]. Mathematics in Practice and Theory, 2012, 42(1):92-101.
[14] 陈守煜.可变集及水资源系统优选决策可变集原理与方法[J]. 水利学报, 2012, 43(9):1066-1074.Chen S Y. Variable sets and the theorem and method of optimal decision making for water resource system[J]. Journal of Hydraulic Engineering, 2012, 43(9):1066-1074.
[15] 门宝辉, 蒋美彤. 基于生态足迹法的水资源承载力研究——以北京市为例[J]. 南水北调与水利科技, 2019, 17(5):29-36.Men B H, Jiang M T. Evaluation of water resources carrying capacity based on ecological footprint-A case study of Beijing[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(5):29-36.
[16] 王红瑞, 巩书鑫, 邓彩云, 等. 基于五元联系数的水资源承载力评价[J]. 西北大学学报(自然科学版), 2019, 49(2):211-218.Wang H R, Gong S X, Deng C Y, et al. Research on water resources carrying capacity based on five-element connection number[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(2):211-218.
[17] 陈隽, 巩书鑫, 王红瑞, 等. 水资源系统分析中模糊隶属度与集对联系数的不确定性特征辨析[J]. 水电能源科学, 2018, 36(11):30-33.Chen J, Gong S X, Wang H R, et al. Uncertainties of fuzzy membership degree and set pair-wise connection in analysis of water resources system[J]. Water Resources and Power, 2018, 36(11):30-33.
[18] 鲁雪萍. 基于可拓模型的水资源承载力评价及多目标优化配置[D].哈尔滨:东北农业大学, 2017.Lu X P. Evaluation of water resources carrying capacity based on extension model and optimal allocation[D]. Harbin:Northeast Agriculture University, 2017.
[19] 钱龙霞, 张韧, 王红瑞, 等. 基于Copula函数的水资源供需风险损失模型及其应用[J]. 系统工程理论与实践, 2016, 36(2):517-527.Qian L X, Zhang R, Wang H R, et al. Risk loss model of water supply and water demand based on copula function and its application[J]. Systems Engineering-Theory & Practice, 2016, 36(2):517-527.
[20] 张丽娜,吴凤平,张陈俊,等. 流域水资源消耗结构与产业结构高级化适配性研究[J]. 系统工程理论与实践, 2020, 40(11):3009-3018.Zhang L N, Wu F P, Zhang C J, et al. The adaptability of basin water resources consumption structure and optimization of industrial structure[J]. Systems Engineering-Theory & Practice, 2020, 40(11):3009-3018.
[21] 金菊良, 魏一鸣, 王文圣. 基于集对分析的水资源相似预测模型[J]. 水力发电学报, 2009, 28(1):72-77.Jin J L, Wei Y M, Wang W S. Set pair analysis based on similarity forecast model of water resources[J]. Journal of Hydroelectric Engineering, 2009, 28(1):72-77.
[22] 曹永强, 朱明明, 张亮亮, 等. 基于可变模糊评价法的大连市水资源承载力分析[J]. 水利水运工程学报, 2016(4):40-46.Cao Y Q, Zhu M M, Zhang L L, et al. Analysis of carrying capacity of water resources in Dalian based on variable fuzzy assessment method[J]. Hydro-Science and Engineering, 2016(4):40-46.
[23] 张洪波, 黄强, 辛琛, 等. 水资源承载力可拓评价方法[J]. 大连理工大学学报, 2006(S1):206-212.Zhang H B, Huang Q, Xin C, et al. Study of extension evaluation method for water resources carrying capacity[J]. Journal of Dalian University of Technology, 2006(S1):206-212.
[24] 谷红梅, 贾丽, 蒋晓辉, 等. 基于熵权物元可拓法的黑河中游水资源承载力评价[J]. 灌溉排水学报, 2016, 35(6):87-92.Gu H M, Jia L, Jiang X H, et al. Evaluation of water resources bearing capacity based on entropy-weight and matter-element assessment methods in midstream of Heihe river[J]. Journal of Irrigation and Drainage, 2016, 35(6):87-92.
[25] 姜秋香, 付强, 王子龙. 三江平原水资源承载力评价及区域差异[J]. 农业工程学报, 2011, 27(9):184-190.Jiang Q X, Fu Q, Wang Z L. Evaluation and regional differences of water resources carrying capacity in Sanjiang plain[J]. Transactions of the CSAE, 2011, 27(9):184-190.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(51879010)
{{custom_fund}}