中图分类号:
V355
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国民用航空局. 《2018年民航行业发展统计公报》[EB/OL].[2019-05-08]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201905/t20190508_196033.html.
[2] DeLaura R, Allan S. Route selection decision support in convective weather:A case study of the effects of weather and operational assumptions on departure throughput[C]//5th Eurocontrol/FAA ATM R&D Seminar, 2003:1-10.
[3] Underhill N, Delaura R. Route availability planning tool evaluation visualizations for the New York and Chicago departure flows[M/OL]//Infotech@Aerospace 2011. American Institute of Aeronautics and Astronautics, 2011. https://doi.org/10.2514/6.2011-1440.
[4] Krozel J, Penny S, Prete J, et al. Comparison of algorithms for synthesizing weather avoidance routes in transition airspace[C]//AIAA Guidance, Navigation, and Control Conference, 2004:1-16.
[5] Krozel J, Prete J, Mitchell J, et al. Capacity estimation for super-dense operations[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2008:1-15.
[6] Song L, Wanke C, Greenbaum D, et al. Predicting sector capacity under severe weather impact for traffic flow management[C]//7th AIAA Aviation Technology, Integration, and Operations Conference, 2007:7887.
[7] Zou J, Krozel J W, Krozel J, et al. Two methods for computing directional capacity given convective weather constraints[C]//AIAA Guidance, Navigation, and Control Conference, 2009:10-13.
[8] 常茂军. 机场终端区容量动态预测方法研究[D]. 南京:南京航空航天大学, 2007. Chang M J. Research on the method of airport terminal airspace capacity dynamic estimation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007.
[9] 李印凤, 胡明华, 彭瑛, 等. 基于阻塞流的多场景终端区容量影响机理[J]. 西南交通大学学报, 2014, 49(5):928-934. Li Y F, Hu M H, Peng Y, et al. Effect mechanism of multi-scenarios terminal capacity based on flow decomposition barrier[J]. Journal of Southwest Jiaotong University, 2014, 49(5):928-934.
[10] 赵征. 空域容量评估与预测技术研究[D]. 南京:南京航空航天大学, 2015. Zhao Z. Research on airspace capacity assessment and forecast[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015.
[11] Ramamoorthy K, Hunter G. Simulation-based airport capacity estimation[C]//2013 Aviation Technology, Integration, and Operations Conference, 2013:1-14.
[12] Song L, Wanke C, Greenbaum D. Predicting sector capacity for TFM decision support[C]//6th AIAA Aviation Technology, Integration, and Operations Conference, 2006:1-10.
[13] Song L, Wanke C, Greenbaum D. Predicting sector capacity for TFM decision support[C]//7th ATM Seminar, 2007:1-10.
[14] Chandramouleeswaran K R, Krzemien D, Burn S K, et al. Machine learning prediction of airport delays in the US air transportation network[C]//2018 Aviation Technology, Integration, and Operations Conference, 2018:1-10.
[15] Ukai T, Chao H, DeLaurentis D. An aircraft deployment prediction model using machine learning techniques[C]//17th AIAA Aviation Technology, Integration, and Operations Conference, 2017:1-14.
[16] Altinok A, Kiran R, Bue B, et al. Modeling key predictors of airport runway configurations using learning algorithms[C]//2018 Aviation Technology, Integration, and Operations Conference, 2018:1-16.
[17] Zhu G, Matthews C, Wei P, et al. En route flight time prediction under convective weather events[C]//2018 Aviation Technology, Integration, and Operations Conference, 2018:1-16.
[18] 周雄飞. 恶劣天气影响下扇区动态容量预测[D]. 南京:南京航空航天大学, 2016. Zhou X F. Sector dynamic capacity forecast under severe weather[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016.
[19] 蒋昕. 危险天气下的动态航班改航研究[D]. 南京:南京航空航天大学, 2016. Jiang X. Research on dynamic flight rerouting in severe weather[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016.
[20] 田勇, 杨双双, 万莉莉, 等. 扇区动态容量评估方法研究[J]. 系统工程理论与实践, 2014, 34(8):2163-2169. Tian Y, Yang S S, Wan L L, et al. Research on the method of sector dynamic capacity evaluation[J]. Systems Engineering-Theory & Practice, 2014, 34(8):2163-2169.
[21] DeLaura R, Evans J. An exploratory study of modeling enroute pilot convective storm flight deviation behavior[R]. Lexington, Massachusetts:Lincoln Laboratory, Massachusetts Institute of Technology, 2006.
[22] Krozel J, Mitchell J, Polishchuk V, et al. Capacity estimation for airspaces with convective weather constraints[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2007:1-15.
[23] Mitchell J, Polishchuk V, Krozel J. Airspace throughput analysis considering stochastic weather[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2006:1-19.
[24] Hagberg A, Schult D, Swart P. Exploring network structure, dynamics, and function using NetworkX[C]//7th Python in Science Conference (SciPy2008), 2008:11-15.
[25] Pedregosa F, Varoquaux G, Gramfort A. Scikit-learn:Machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12(10):2825-2830.
[26] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71731001)
{{custom_fund}}