为更好地完成水下探测任务, 提升潜行效率, 本文提出了自主水下航行器 (autonomous underwater vehicle, AUV)在可变洋流中的全局路径规划方法. 首先, 识别潜行区域地形与静态障碍物, 建立以三维空 间路径最短与路径平滑度最大为约束的多目标函数, 利用提出的改进QPSO算法求解, 生成初始路径; 其 次, 考虑水下环境中不确定障碍物的存在和时变洋流的干扰, 将动态障碍物信息更新在控制图上, 用高斯 噪声对洋流速度进行估计, 确保AUV实现动态躲避与适应洋流变化以输出稳定的速度; 最后, 建立观测 与惩罚函数来实时调整初始路径, 得到更为科学合理的潜行路径. 仿真结果表明, 本文提出的全局规划方 法求解的路径能使AUV潜行更加平稳与安全, 使其具有更好的自主能力; 所提改进算法与常规算法对比, 改进的QPSO算法求解多目标离散问题所得解的精度与质量更好.
Abstract
To improve the work efficiency of underwater detection by AUV, a global path planning method is proposed for AUV in variable currents. Firstly, the terrain and static obstacles are identified, and the multi-objective function is established, which is constrained by the shortest and maximum smoothness of the path in the 3D space. The improved QPSO algorithm is used to solve the problem and generate the initial path. Secondly, considering the existence of uncertain obstacles in underwater environment and disturbance of time-varying currents, the dynamic obstacle information is updated on the known map, and the velocity vector of ocean current is estimated by using Gaussian noise, so that ensure that the AUV adapts to the change of the ocean current to output the appropriate speed. Finally, the observation and penalty function are established to adjust the initial path in real-time and get a more scientific and reasonable path. The simulation results show that the path planning method can make the AUV stealthy more stable and autonomous. Comparing with the conventional algorithm, the proposed algorithm is better than other algorithm in the accuracy and quality of the solution.
关键词
复杂水下环境 /
路径规划 /
改进QPSO算法 /
混合编程
{{custom_keyword}} /
Key words
complex underwater environment /
path planning /
improved QPSO algorithm /
hybrid programming
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lozano-Pérez T, Wesley M A. An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the ACM, 1979, 22(10):560-570.
[2] 王宏健, 陈子印, 贾鹤鸣. 基于滤波反步法的欠驱动AUV三维路径跟踪控制[J]. 自动化学报, 2015, 41(3):631-645.Wang H J, Chen Z Y, Jia H M. Three-dimensional path tracking control of underactuated AUV based on filte red backstepping method[J]. Acta Automatica Sinica, 2015, 41(3):631-645.
[3] 朱大奇, 曹翔. 多个水下机器人动态任务分配和路径规划的信度自组织算法[J]. 控制理论与应用, 2015, 37(4):762-769.Zhu D Q, Cao X. Self-organizing algorithm for dynamic task assignment and path planning of multiple underwater robots[J]. Control Theory and Application, 2015, 37(4):762-769.
[4] Zheng H, Negenborn R R, Lodewijks G. Closed-loop scheduling and control of waterborne AGVs for energy-efficient[J]. Transportation Research Part E:Logistics and Transportation Review, 2017, 105(9):261-278.
[5] Singh Y G, Sharma S. A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 169(1):181-201.
[6] Eichhorn M. Optimal routing strategies for autonomous under water vehicles in time-varying environment[J]. Robotics and Autonomous Systems, 2015, 67(6):33-43.
[7] Mansour A, Aghil Y. Three-dimensional optimal path planning for way point guidance of an autonomous underwater vehicle[J]. Robotics and Autonomous Systems, 2015, 67(6):23-32.
[8] Zhang Y, Gong D W, Zhang J H. Robot path planning in uncertain environment using multi-objective particle swarm optimization[J]. Neurocomputing, 2013, 106(1):172-185.
[9] Wu Y. Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous underwater vehicle (AUV) in an underwater target strike mission[J]. Ocean Engineering, 2019, 182(6):162-173.
[10] Ma Y, Hu M, Yan X. Multi-objective path planning for unmanned surface vehicle with currents effects[J]. ISA Transactions, 2018, 75(4):137-156.
[11] Zeng Z, Sammut K, Lian L, et al. A comparison of optimization techniques for AUV path planning in environments with ocean currents[J]. Robotics and Autonomous Systems, 2016, 82(8):61-72.
[12] Mahmoudzadeh S, David M W P, Sammut K, et al. A hierarchal planning framework for AUV mission management in a spatiotemporal varying ocean[J]. Computers and Electrical Engineering, 2018, 67(4):741-760.
[13] Milad N, Esmaeel K, Samira D. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications, 2019, 115:106-120.
[14] Isern-González J, Hernández-Sosa D, Fernández-Perdomo E, et al. Path planning for underwater gliders using iterative optimization[C]//IEEE International Conference on Robotics Automation, 2011:356-362.
[15] Lee T, Kim H, Chung H, et al. Energy efficient path planning for a marine surface vehicle considering heading angle[J]. Ocean Engineering, 2015, 107(3):118-131.
[16] Singh Y, Sanjay S, Robert S, et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 169(10):187-201.
[17] Li Y, Jiao L, Shang R, et al. Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation[J]. Information Sciences, 2015, 294(10):408-422.
[18] Subramani D N, Wei Q J, Lermusiaux P F J. Stochastic time-optimal path-planning in uncertain, strong, and dynamic flows[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 6(333):218-237.
[19] De Oliveira V, Kone B. Prediction intervals for integrals of Gaussian random fields[J]. Computational Statistics and Data Analysis, 2015, 83(3):37-51.
[20] 李代金, 罗凯, 党建军,等. 超空泡水下航行器运动学与动力学模型[J]. 系统工程理论与实践, 2013, 33(9):2437-2442. Li D J, Luo K, Dang J J, et al. Kinematics and dynamics model of supercavitated underwater vehicle[J]. Systems Engineering-Theory & Practice, 2013, 33(9):2437-2442.
[21] Garau B, Alvarez A, Oliver G. AUV navigation through turbulent ocean environments supported by onboard H-ADCP[C]//Florida:IEEE, 2006:170-181.
[22] De Oliveira V, Kone B. Prediction intervals for integrals of Gaussian random fields[J]. Computational Statistics and Data Analysis, 2015, 83(3):37-51.
[23] 郭兴海,计明军,张卫丹.融合多目标与速度控制的AGV全局路径规划[J].控制与决策, 2019, 30(12):1-19.Guo X H, Ji M J, Zhang W D. AGV global path planning integrating with the control of multi-objective and speed control[J]. Control and Decision, 2019, 30(12):1-19.
[24] Sun J, Wu X. Convergence analysis and improvements of quantum-behaved particle swarm optimization[J]. Information Sciences, 2012, 193(3):81-103.
[25] 黄霞, 叶春明, 曹磊. 多目标置换流水车间调度的混沌杂草优化算法[J]. 系统工程理论与实践, 2017, 37(4):253-262. Huang X, Ye C M, Cao L. Chaos weed optimization algorithm for multi-objective replacement flow shop scheduling[J]. Systems Engineering-Theory & Practice, 2017, 37(4):253-262.
[26] 刁鹏飞, 毕晓君, 王艳娇. 基于分解技术的动态多目标引力搜索算法[J]. 系统工程理论与实践, 2018, 38(5):1300-1309.Diao P F, Bi X J, Wang Y J. Dynamic multi-objective gravity search algorithm based on decomposition technique[J]. Systems Engineering-Theory & Practice, 2018, 38(5):1300-1309.
[27] Zhu H L, Ji M J, Guo W W. Two-stage search algorithm for the inbound container unloading and stacking problem[J]. Applied Mathematical Modelling, 2020, 77(2):1000-1024.
[28] Ji M, Guo W, Zhu H, et al. Optimization of loading sequence and rehandling strategy for multi-quay crane operations in container terminals[J]. Transportation Research Part E, 2015, 80(8):1-19.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71971035, 71572022);大连海事大学"双一流"建设专项资金(BSCXXM017)
{{custom_fund}}