非参数环境生产技术建模及应用研究综述

周鹏, 安超, 孙杰, 闻雯

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (8) : 2065-2075.

PDF(1329 KB)
PDF(1329 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (8) : 2065-2075. DOI: 10.12011/1000-6788-2019-2614-11
论文

非参数环境生产技术建模及应用研究综述

    周鹏1, 安超1, 孙杰2, 闻雯1
作者信息 +

Models and applications of nonparametric environmental production technology: A survey

    ZHOU Peng1, AN Chao1, SUN Jie2, WEN Wen1
Author information +
文章历史 +

摘要

非参数数据包络分析方法在能源与环境效率评估、污染物影子价格估计、排放权分配等领域获得了广泛应用,其建模的一个重要理论基础是环境生产技术的表征.本文对非参数环境生产技术的理论、模型及应用做了较为系统的回顾与展望.首先,从非期望产出处置方式的角度对常见的非参数环境生产技术进行总结分类,指出各类环境生产技术的关键特征和内在局限.其次,从可处置性、应用领域、污染物种类等方面,系统总结了环境生产技术的最新研究进展,对以环境生产技术为基础的应用研究的特征做了归纳.最后,指出环境生产技术未来可能的研究方向,以期推动环境生产技术相关理论研究和实践应用.

Abstract

Nonparametric data envelopment analysis has recently gained much popularity in energy and environmental efficiency measurement, shadow price estimation for pollutants and emission permits allocation. A theoretical basis for such applications is to characterize the environmental production technology. This paper aims to review the theory, models and applications of nonparametric environmental production technology in a systematical way. First, we summarize and classify the commonly used technologies and evaluate their main characteristics and weaknesses. Then, we review the relevant journal articles and show their features in application by disposability, application area and pollutant type. Finally, the possible topics for future research have been identified which may help to promote the development of environmental production technology in theory and applications.

关键词

二氧化碳 / 环境生产技术 / 数据包络分析 / 非期望产出 / 可处置性

Key words

carbon dioxide / environmental production technology / data envelopment analysis / undesirable outputs / disposability

引用本文

导出引用
周鹏 , 安超 , 孙杰 , 闻雯. 非参数环境生产技术建模及应用研究综述. 系统工程理论与实践, 2020, 40(8): 2065-2075 https://doi.org/10.12011/1000-6788-2019-2614-11
ZHOU Peng , AN Chao , SUN Jie , WEN Wen. Models and applications of nonparametric environmental production technology: A survey. Systems Engineering - Theory & Practice, 2020, 40(8): 2065-2075 https://doi.org/10.12011/1000-6788-2019-2614-11
中图分类号: F205   

参考文献

[1] 周鹏, 周迅, 周德群. 二氧化碳减排成本研究述评[J]. 管理评论, 2014, 26(11):20-27.Zhou P, Zhou X, Zhou D Q. A survey of studies on estimating CO2 mitigation costs[J]. Management Review, 2014, 26(11):20-27.
[2] 林伯强, 谭睿鹏. 中国经济集聚与绿色经济效率[J]. 经济研究, 2019, 54(2):121-134.Lin B Q, Tan R P. Economic agglomeration and green economy efficiency in China[J]. Economic Research Journal, 2019, 54(2):121-134.
[3] Zhou P, Ang B W, Poh K L. A survey of data envelopment analysis in energy and environmental studies[J]. European Journal of Operational Research, 2008, 189(1):1-18.
[4] Han Y M, Long C, Geng Z Q, et al. Carbon emission analysis and evaluation of industrial departments in China:An improved environmental DEA cross model based on information entropy[J]. Journal of Environmental Management, 2018, 205:298-307.
[5] Halkos G E, Polemis M L. The impact of economic growth on environmental efficiency of the electricity sector:A hybrid window DEA methodology for the USA[J]. Journal of Environmental Management, 2018, 211:334-346.
[6] Roshdi I, Hasannasab M, Margaritis D, et al. Generalised weak disposability and efficiency measurement in environmental technologies[J]. European Journal of Operational Research, 2018, 266(3):1000-1012.
[7] Wang K, Wei Y M, Huang Z M. Environmental efficiency and abatement efficiency measurements of China's thermal power industry:A data envelopment analysis based materials balance approach[J]. European Journal of Operational Research, 2018, 269(1):35-50.
[8] 史丹, 王俊杰. 基于生态足迹的中国生态压力与生态效率测度与评价[J]. 中国工业经济, 2016(5):7-23.Shi D, Wang J J. Measurement and evaluation of China's ecological pressure and ecological efficiency based on ecological footprint[J]. China Industrial Economics, 2016(5):7-23.
[9] He X P. Regional differences in China's CO2 abatement cost[J]. Energy Policy, 2015, 80:145-152.
[10] Li T X, Balezentis T, Makutnien D, et al. Energy-related CO2 emission in European Union agriculture:Driving forces and possibilities for reduction[J]. Applied Energy, 2016, 180:682-694.
[11] Du L M, Hanley A, Zhang N. Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China:A parametric meta-frontier analysis[J]. Resource and Energy Economics, 2016, 43:14-32.
[12] Feng C P, Chu F, Ding J, et al. Carbon emissions abatement (CEA) allocation and compensation schemes based on DEA[J]. Omega, 2015, 53:78-89.
[13] Sun Z R, Luo R D, Zhou D Q. Optimal path for controlling sectoral CO2 emissions among China's regions:A centralized DEA approach[J]. Sustainability, 2016, 8(1):28. https://doi.org/10.3390/su8010028.
[14] Wu J, Zhu Q Y, Liang L. CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China[J]. Applied Energy, 2016, 166:282-291.
[15] Wang K, Zhang X, Yu X Y, et al. Emissions trading and abatement cost savings:An estimation of China's thermal power industry[J]. Renewable and Sustainable Energy Reviews, 2016, 65:1005-1017.
[16] Zha D L, Yang G L, Wang Q W. Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method[J]. Energy Economics, 2019, 84:104521.
[17] Miao Z, Balezentis T, Tian Z H, et al. Environmental performance and regulation effect of China's atmospheric pollutant emissions:Evidence from "three regions and ten urban agglomerations"[J]. Environmental and Resource Economics, 2019, 74(1):211-242.
[18] Fan J L, Da Y B, Wan S L, et al. Determinants of carbon emissions in "Belt and Road initiative" countries:A production technology perspective[J]. Applied Energy, 2019, 239:268-279.
[19] Wang Q W, Hang Y, Su B, et al. Contributions to sector-level carbon intensity change:An integrated decomposition analysis[J]. Energy Economics, 2018, 70:12-25.
[20] Shephard R W. Theory of cost and production functions[M]. Princeton University Press, 2015.
[21] Considine T J, Larson D F. The environment as a factor of production[J]. Journal of Environmental Economics and Management, 2006, 52(3):645-662.
[22] Hailu A, Veeman T S. Non-parametric productivity analysis with undesirable outputs:An application to the Canadian pulp and paper industry[J]. American Journal of Agricultural Economics, 2001, 83(3):605-616.
[23] Zhou P, Delmas M A, Kohli A. Constructing meaningful environmental indices:A nonparametric frontier approach[J]. Journal of Environmental Economics and Management, 2017, 85:21-34.
[24] Forsund F R. Good modelling of bad outputs:Pollution and multiple-output production[R]. Memorandum, 2008.
[25] Forsund F R. Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance[J]. Empirical Economics, 2018, 54(1):1-33.
[26] Seiford L M, Zhu J. Modeling undesirable factors in efficiency evaluation[J]. European Journal of Operational Research, 2002, 142(1):16-20.
[27] Woo C, Chung Y, Chun D, et al. The static and dynamic environmental efficiency of renewable energy:A Malmquist index analysis of OECD countries[J]. Renewable & Sustainable Energy Reviews, 2015, 47:367-376.
[28] Hua Z S, Bian Y, Liang L. Eco-efficiency analysis of paper mills along the Huai River:An extended DEA approach[J]. Omega, 2007, 35(5):578-587.
[29] Zhou P, Ang B W, Poh K L. Slacks-based efficiency measures for modeling environmental performance[J]. Ecological Economics, 2006, 60(1):111-118.
[30] Zhou P, Poh K L, Ang B W. A non-radial DEA approach to measuring environmental performance[J]. European Journal of Operational Research, 2007, 178(1):1-9.
[31] Zhou P, Ang B W, Poh K L. Measuring environmental performance under different environmental DEA technologies[J]. Energy Economics, 2008, 30(1):1-14.
[32] Yang H L, Pollitt M. The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA:Environmental performance of Chinese coal-fired power plants[J]. Energy Policy, 2010, 38(8):4440-4444.
[33] Wang H, Ang B W, Wang Q W, et al. Measuring energy performance with sectoral heterogeneity:A non-parametric frontier approach[J]. Energy Economics, 2017, 62:70-78.
[34] Wang K, Wei Y M. China's regional industrial energy efficiency and carbon emissions abatement costs[J]. Applied Energy, 2014, 130:617-631.
[35] Fare R, Grosskopf S, Lovell C A K, et al. Multilateral productivity comparisons when some outputs are undesirable:A nonparametric approach[J]. The Review of Economics and Statistics, 1989, 71(1):90-98.
[36] Fare R, Grosskopf S. Modeling undesirable factors in efficiency evaluation:Comment[J]. European Journal of Operational Research, 2004, 157(1):242-245.
[37] Kuosmanen T. Weak disposability in nonparametric production analysis with undesirable outputs[J]. American Journal of Agricultural Economics, 2005, 87(4):1077-1082.
[38] Kuosmanen T, Matin R K. Duality of weakly disposable technology[J]. Omega, 2011, 39(5):504-512.
[39] Murty S, Russell R R, Levkoff S B. On modeling pollution-generating technologies[J]. Journal of Environmental Economics and Management, 2012, 64(1):117-135.
[40] Murty S, Russell R R. Modeling emission-generating technologies:Reconciliation of axiomatic and by-production approaches[J]. Empirical Economics, 2016, 54(1):7-30.
[41] Dakpo K H, Lansink A O. Dynamic pollution-adjusted inefficiency under the by-production of bad outputs[J]. European Journal of Operational Research, 2019, 276(1):202-211.
[42] Ray S C, Mukherjee K, Venkatesh A. Nonparametric measures of efficiency in the presence of undesirable outputs:A by-production approach[J]. Empirical Economics, 2017, 54(1):31-65.
[43] Hampf B, Rødseth K L. Carbon dioxide emission standards for U.S. power plants:An efficiency analysis perspective[J]. Energy Economics, 2015, 50:140-153.
[44] Rødseth K L. Environmental efficiency measurement and the materials balance condition reconsidered[J]. European Journal of Operational Research, 2016, 250(1):342-346.
[45] Rødseth K L. Axioms of a polluting technology:A materials balance approach[J]. Environmental and Resource Economics, 2017, 67(1):1-22.
[46] Sueyoshi T, Goto M. Data envelopment analysis for environmental assessment:Comparison between public and private ownership in petroleum industry[J]. European Journal of Operational Research, 2012, 216(3):668-678.
[47] Chen L, Wang Y M, Lai F J. Semi-disposability of undesirable outputs in data envelopment analysis for environmental assessments[J]. European Journal of Operational Research, 2017, 260(2):655-664.
[48] Ray S C, Mukherjee K, Venkatesh A. Nonparametric measures of efficiency in the presence of undesirable outputs:A by-production approach[J]. Empirical Economics, 2018, 54(1):31-65.
[49] Xie B C, Fan Y F, Qu Q Q. Does generation form influence environmental efficiency performance? An analysis of China's power system[J]. Applied Energy, 2012, 96:261-271.
[50] Huang C W, Chiu Y H, Fang W T, et al. Assessing the performance of Taiwan's environmental protection system with a non-radial network DEA approach[J]. Energy Policy, 2014, 74:547-556.
[51] Bian Y, Yan S, Xu H. Efficiency evaluation for regional urban water use and waste water decontamination systems in China:A DEA approach[J]. Resources, Conservation and Recycling, 2014, 83:15-23.
[52] Zhou P, Ang B W. Decomposition of aggregate CO2 emissions:A production-theoretical approach[J]. Energy Economics, 2008, 30(3):1054-1067.
[53] Zhou P, Ang B W, Han J Y. Total factor carbon emission performance:A Malmquist index analysis[J]. Energy Economics, 2010, 32(1):194-201.
[54] Wang H, Ang B W, Zhou P. Decomposing aggregate CO2 emission changes with heterogeneity:An extended production-theoretical approach[J]. The Energy Journal, 2018, 39(1):59-79.

基金

国家自然科学基金(71625005,71934007,71573119)
PDF(1329 KB)

Accesses

Citation

Detail

段落导航
相关文章

/