中图分类号:
O29
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯建芬, 周轩宇, 段梦菲. 可转债期权条款设计与影响分析[J]. 管理评论, 2018, 30(8):58-68.Feng J F, Zhou X Y, Duan M F. Analysis of convertible bond option clause design and its effect[J]. Management Review, 2018, 30(8):58-68.
[2] 黄冰华, 冯芸. 可转换债券套利策略研究:中国市场的例子[J]. 管理评论, 2017, 29(11):3-16.Huang B H, Feng Y. Convertible bond arbitrage strategy:Case of Chinese market[J]. Management Review, 2017, 29(11):3-16.
[3] 袁显平, 柯大钢. 可转换债券融资相关事件的股价效应研究[J]. 管理评论, 2008, 20(4):17-24.Yuan X P, Ke D G. Research on stock price effect of convertible bond financing-related events[J]. Management Review, 2008, 20(4):17-24.
[4] Brennan M J, Schwartz E S. Convertible bonds:Valuation and optimal strategies for call and conversion[J]. The Journal of Finance, 1977, 32(5):1699-1715.
[5] Ayache E, Forsyth P A, Vetzal K R. The valuation of convertible bonds with credit risk[J]. Journal of Derivatives, 2003, 11(1):9-29.
[6] 尤左伟, 刘善存, 张强. 混合分数布朗运动下可转债定价模型研究[J]. 系统工程理论与实践, 2017, 37(4):843-854.You Z W, Liu S C, Zhang Q. Convertible bond pricing in a mixed fractional Brownian motion environment[J]. Systems Engineering-Theory & Practice, 2017, 37(4):843-854.
[7] 孙玉东, 师义民, 谭伟. 带跳混合分数布朗运动下利差期权定价[J]. 系统科学与数学, 2012, 32(11):1377-1385.Sun Y D, Shi Y M, Tan W. Pricing for outer performance option in mixed fractional Brownian motion with jump[J]. Journal of Systems Science & Mathematical Sciences, 2012, 32(11):1377-1385.
[8] 刘棠, 张盘铭. 期权定价问题的数值方法[J]. 系统科学与数学, 2004, 24(1):10-16.Liu T, Zhang P M. Numerical methods for option pricing problems[J]. Journal of Systems Science & Mathematical Sciences, 2004, 24(1):10-16.
[9] Ammann M, Kind A, Wilde C. Simulation-based pricing of convertible bonds[J]. Journal of Empirical Finance, 2008, 15(2):310-331.
[10] 马俊海, 杨非. 可转换债券蒙特卡罗模拟定价的控制变量改进方法[J]. 系统工程理论与实践, 2009, 29(6):77-85.Ma J H, Yang F. Improved control variable methods of Monte Carlo simulation for pricing convertible bonds[J]. Systems Engineering-Theory & Practice, 2009, 29(6):77-85.
[11] 张卫国,史庆盛,许文坤. 基于全最小二乘拟蒙特卡罗方法的可转债定价研究[J]. 管理科学, 2011, 24(1):82-89.Zhang W G, Shi Q S, Xu W K. Pricing model of convertible bonds in China by total least-squares Quasi-Monte Carlo method[J]. Journal of Management Science, 2011, 24(1):82-89.
[12] Fan C X, Luo X G, Wu Q B. Stochastic volatility vs. jump diffusions:Evidence from the Chinese convertible bond market[J]. International Review of Economics & Finance, 2017, 49:1-16.
[13] 李念夷, 陈懿冰. 基于违约风险的三叉树模型在可转债定价中的应用研究[J]. 管理评论, 2011, 23(12):26-31.Li N Y, Chen Y B. Trinomial tree with default risk and its application to pricing convertible bonds[J]. Management Review, 2011, 23(12):26-31.
[14] Hung M W, Wang J Y. Pricing convertible bonds subject to default risk[J]. Journal of Derivatives, 2002, 10(2):75-87.
[15] Chambers D R, Lu Q. A tree model for pricing convertible bonds with equity, interest rate, and default risk[J]. Journal of Derivatives, 2007, 14(4):25-46.
[16] 庄新田, 周玲春. 基于双因素的可转换债券定价模型[J]. 东北大学学报(自然科学版), 2006, 27(3):320-323.Zhuang X T, Zhou L C. Two-factor pricing model for convertible bonds[J]. Journal of Northeastern University (Natural Science), 2006, 27(3):320-323.
[17] 朱艳芳, 张维. 引入利率风险的可转换债券定价模型及实证研究[J]. 天津大学学报(社会科学版), 2008, 10(6):510-515.Zhu Y F, Zhang W. Pricing model of convertible bonds with interest rate risk and its empirical research[J]. Journal of Tianjin University (Social Science), 2008, 10(6):510-515.
[18] 谢百帅, 张卫国, 廖萍康, 等. 基于三叉树模型带信用风险的可转债定价[J]. 系统工程, 2013, 31(9):18-23.Xie B S, Zhang W G, Liao P K, et al. The valuation of convertible bonds with credit risk by trinomial tree[J]. Systems Engineering, 2013, 31(9):18-23.
[19] Lu L, Xu W. A simple and efficient two-factor willow tree method for convertible bond pricing with stochastic interest rate and default risk[J]. The Journal of Derivatives, 2017, 25(1):37-54.
[20] Xu W, Hong Z W, Qin C X. A new sampling strategy willow tree method with application to path-dependent option pricing[J]. Quantitative Finance, 2013, 13(6):861-872.
[21] Curran M. Willow power:Optimizing derivative pricing trees[J]. Algo Research Quarterly, 2001, 4(4):15-24.
[22] 杨春梅, 梁朝晖. 基于多重期权法的中国可转债价值研究[J]. 大连理工大学学报(社会科学版), 2014, 35(3):50-55.Yang C M, Liang C H. Valuing Chinese convertible bonds with multiple options[J]. Journal of Dalian University of Technology (Social Science), 2014, 35(3):50-55.
[23] Liu Q. Approximating the embedded m out of n day soft-call option of a convertible bond:An auxiliary reversed binomial tree method[EB/OL].[2017-12-24]. http://ssrn.com/abstract=956813.
[24] Navin R L. Convertible bond valuation:20 out of 30 day soft-call[J]. Intelligence for Financial Engineering, 1999:198-217.
[25] Peter C, Wu L R. Analyzing volatility risk and risk premium in option contracts:A new theory[J]. Journal of Financial Economics, 2016, 120(1):1-20.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71971031,U1811462,71771175)
{{custom_fund}}