基于高维R-vine Copula的金融市场投资组合优化研究

林宇, 梁州, 林子枭, 吴庆贺

系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (12) : 3061-3072.

PDF(916 KB)
PDF(916 KB)
系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (12) : 3061-3072. DOI: 10.12011/1000-6788-2019-0448-12
论文

基于高维R-vine Copula的金融市场投资组合优化研究

    林宇, 梁州, 林子枭, 吴庆贺
作者信息 +

Research on financial market portfolio optimization based on high-dimensional R-vine Copula

    LIN Yu, LIANG Zhou, LIN Zixiao, WU Qinghe
Author information +
文章历史 +

摘要

为优化国际金融市场的投资组合,本文以全球具有代表性的七大股票市场重要股票指数作为金融市场的典型代表:首先运用较为灵活的APARCH模型来刻画股票指数收益序列的"典型事实"特征,其次针对投资组合优化模型中变量之间复杂相依关系,采用最大生成树MST(maximum spanning tree,MST)算法选择的R-vine Copula来刻画七个股票市场的相依结构,进而测度R-vine Copula相依结构下组合风险CVaR,最后基于R-vine Copula相依结构条件下建立Mean-CVaR投资组合模型,并实证对比了Mean-VaR,Mean-CVaR和基于R-vine Copula相依结构下的Mean-CVaR模型的拟合效果.实证结果表明:考虑资产之间的相依结构能起到优化投资组合的效果,在降低投资组合风险的同时增加了回报率;基于R-vine Copula相依结构下的Mean-CVaR模型投资组合优化效果明显优于Mean-CVaR模型,而Mean-VaR模型较其它两种模型表现相对较差.

Abstract

In order to optimize the investment portfolio of the international financial market, this paper selects the important stock index of the seven major stock markets in the world. First, we use the more flexible APARCH model to describe the "stylized facts" of the stock index return sequence. In the portfolio optimization model, the R-vine Copula, which is selected by the maximum spanning tree (MST) algorithm is used to describe the interdependent structure of the seven stock markets, and then measure portfolio risk under R-vine Copula dependent structure CVaR. Finally, the Mean-CVaR portfolio model was established under the R-vine Copula dependent structure condition. And compare Mean-VaR, Mean-CVaR and Mean-CVaR model based on R-vine Copula dependency structure. The empirical results shows that the interdependence between assets can be used to optimize the portfolio effect, reducing the risk of portfolio risk while increasing the rate of return. The Mean-CVaR model based on the R-vine Copula dependent structure is better than the Mean-CVaR model, while the Mean-VaR model has a relatively poor performance.

关键词

投资组合优化 / R-vine Copula / 金融市场 / 相依结构

Key words

portfolio optimization / R-vine Copula / financial market / dependent structure

引用本文

导出引用
林宇 , 梁州 , 林子枭 , 吴庆贺. 基于高维R-vine Copula的金融市场投资组合优化研究. 系统工程理论与实践, 2019, 39(12): 3061-3072 https://doi.org/10.12011/1000-6788-2019-0448-12
LIN Yu , LIANG Zhou , LIN Zixiao , WU Qinghe. Research on financial market portfolio optimization based on high-dimensional R-vine Copula. Systems Engineering - Theory & Practice, 2019, 39(12): 3061-3072 https://doi.org/10.12011/1000-6788-2019-0448-12
中图分类号: F832.5   

参考文献

[1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1):77-91.
[2] 黄金波, 李仲飞, 姚海祥. 基于CVaR两步核估计量的投资组合管理[J]. 管理科学学报, 2016, 19(5):114-126.Huang J B, Li Z F, Yao H X. Investment portfolio management based on the two-step kernel estimator of CVaR[J]. Journal of Management Sciences in China, 2016, 19(5):114-126.
[3] 马超群, 金凤, 杨文昱, 等. 基于藤结构Copula-SV模型的外汇投资组合风险分析[J]. 统计与决策, 2013, 378(6):152-156.Ma C Q, Jin F, Yang W Y, et al. Analysis of portfolio investment risk in foreign exchange based on vine Copula-SV model[J]. Statistics & Decision, 2013, 378(6):152-156.
[4] 谢赤, 屈敏, 王纲金. 基于M-Copula-GJR-VaR模型的黄金市场最优套期保值比率研究[J]. 管理科学, 2013, 26(2):90-99.Xie C, Qu M, Wang G J. Research on optimal hedging ratios of gold market based on M-Copula-GJR-VaR model[J]. Journal of Management Science, 2013, 26(2):90-99.
[5] Alejandro B, Bestriz B, Raquel B. VaR as the sensitivity:Application in risk optimization[J]. Journal of Computational and Applied Mathematics, 2017, 309:175-185.
[6] Wang C P, Huang H H. Optimal insurance contract under VaR and CVaR constraints[J]. North American Journal of Economics and Finance, 2016, 37:110-127.
[7] 张清叶, 高岩. 基于CVaR投资组合优化问题的非光滑优化方法[J]. 中国管理科学, 2017, 25(10):11-19.Zhang Q Y, Gao Y. A nonsmooth optimization method for portfolio optimization based on CVaR[J]. Chinese Journal of Management Science, 2017, 25(10):11-19.
[8] Rockafellar R T, Uryasev S. Optimation of conditional value-at-risk[J]. The Journal of Risk, 2000, 2(3):21-41.
[9] Sun H Z, Weng C G, Zhang Y. Optimal multivariate quota-share reinsurance:A nonparametric Mean-CVaR framework[J]. Insurance:Mathematics and Economics, 2016(72):197-214.
[10] 许启发, 周莹莹, 蒋翠侠. 带有范数约束的CVaR高维组合投资决策[J]. 中国管理科学, 2017, 25(2):40-49.Xu Q F, Zhou Y Y, Jiang C X. CVaR based high dimensional portfolio selection under norm constraints[J]. Chinese Journal of Management Science, 2017, 25(2):40-49.
[11] Sklar A. Fonctions de repartition an dimensions etleursmarges[J]. Publication del'Institut de Statistique de L'Universits'e de Paris, 1959, 8(1):229-231.
[12] 淳伟德,付君实,赵如波. 基于混合Copula函数的金融市场非线性极端风险传染研究[J]. 预测, 2015, 34(4):53-58.Chun W D, Fu J S, Zhao R B. The study on the financial market nonlinear risk contagion based on mixed Copula model[J]. Forecasting, 2015, 34(4):53-58.
[13] 吴玉宝, 汪金菊. 沪深股市的相关结构分析与投资组合风险度量——基于ARFIMA-GARCH-Copula模型[J]. 运筹与管理, 2016, 25(2):220-225.Wu Y B, Wang J J. Shanghai and Shenzhen stock market related structure analysis and portfolio risk measurement based on ARFIMA-GARCH-Copula model[J]. Operation Research and Management Science, 2016, 25(2):220-225.
[14] Bedford T, Cooke R M. Vines-A new graphical model for dependent random variables[J]. Annals of Statistics, 2002, 30(4):1031-1068.
[15] Aas K, Czado C, Frigessi A. Pair-Copula construction of multiple dependence[J]. Insurance:Mathematics and Economics, 2009, 44(2):182-198.
[16] 陈清平, 程希骏. 一种基于Pair-copula法构建高维相依结构的研究[J]. 数理统计与管理, 2013(32):232-239.Chen Q P, Cheng X J. A study on pair-copula constructions of multiple dependence[J]. Journal of Applied Statistics and Management, 2013(32):232-239.
[17] 许民利, 李展. 需求依赖于价格情境下基于Copula-CVaR的报童决策[J]. 控制与决策, 2014, 29(6):1083-1090.Xu M L, Li Z. Newsvendor decision based on Copula-CVaR with price-dependent demand[J]. Control and Decision, 2014, 29(6):1083-1090.
[18] 马锋, 魏宇, 黄登仕. 基于Vine-Copula方法的股市组合动态VaR预测及测度模型研究[J]. 系统工程理论与实践, 2015, 35(1):26-36.Ma F, Wei Y, Huang D S. Measurement of dynamic stocks portfolio VaR and its forecasting model based on Vine Copula[J]. Systems Engineering-Theory & Practice, 2015, 35(1):26-36.
[19] 高江. 藤Copula模型与多资产投资组合VaR预测[J]. 数理统计与管理, 2013, 32(2):247-258.Gao J. Vine Copula model and VaR forecast for multi-asset portfolio[J]. Journal of Applied Statistics and Management, 2013, 32(2):247-258.
[20] 吴海龙, 方兆本, 朱俊鹏. 基于R-Vine Copula方法的投资组合风险分析[J]. 投资研究, 2013, 32(10):98-107.Wu H L, Fang Z B, Zhu J P. Risk analysis of portfolio based on R-Vine Copula method[J]. Review of Investment Studies, 2013, 32(10):98-107.
[21] 许启发, 王侠英, 蒋翠侠, 等. 基于藤copula-CAViaR方法的股市风险溢出效应研究[J]. 系统工程理论与实践, 2018, 38(11):2738-2749.Xu Q F, Wang X Y, Jiang C X, et al. Investigating risk spillover effects among stock markets:A vine copula-CAViaR approach[J]. Systems Engineering-Theory & Practice, 2018, 38(11):2738-2749.
[22] 张鹏, 张逸菲. 完全市场情况下多阶段均值-VaR投资组合优化[J]. 武汉科技大学学报, 2014(4):315-320.Zhang P, Zhang Y F. Optimization of the multiperiod mean-VaR portfolio selection in a complete market[J]. Journal of Wuhan University of Science and Technology, 2014(4):315-320.
[23] 何娟, 王建, 蒋祥林, 等. 基于Copula-CVaR-EVT方法的供应链金融质物组合优化[J]. 系统工程理论与实践, 2015, 35(1):1-16.He J, Wang J, Jiang X L, et al. Inventory portfolio optimization in supply chain finance:A Copula-CVaR-EVT approach[J]. Systems Engineering-Theory & Practice, 2015, 35(1):1-16.
[24] 张冀, 谢远涛, 杨娟. 风险依赖、一致性风险度量与投资组合——基于Mean-Copula-CVaR的投资组合研究[J]. 金融研究, 2016(10):159-173.Zhang J, Xie Y T, Zhang J. Risk dependence, consistency risk measurement and portfolio:Based on Mean-Copula-CVaR model[J]. Journal of Financial Research, 2016(10):159-173.
[25] Deng L, Ma C, Yang W. Portfolio optimization via pair Copula-GARCH-EVT-CVaR model[J]. Systems Engineering Procedia, 2011, 2:171-181.
[26] Thomas N, Claudia C. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copula[J]. Journal of Multivariate Analysis, 2016, 151:69-89.
[27] 王璐, 黄登仕, 魏宇. 国际多元化下投资组合优化研究动态Copula方法[J]. 数理统计与管理, 2016, 35(6):1109-1124.Wang L, Huang D S, Wei Y. Research on portfolio optimization under international diversification:Dynamic Copula[J]. Journal of Applied Statistics and Management, 2016, 35(6):1109-1124.
[28] 李丽梅, 胡华. 基于Svt-EVT-Vine Copula的投资组合VaR研究[J]. 数学的实践与认识, 2016, 46(9):104-112.Li L M, Hu H. The study of investment portfolio VaR based on Svt-EVT-Vine Copula[J]. Mathematics in Practice and Theory, 2016, 46(9):104-112.
[29] Riadh A, Mohamed S, Ben A. Relationship between oil, stock price and exchange rate:A vine Copula based GARCH method[J]. North American Journal of Economics and Finance, 2016(37):458-471.
[30] Daniel K, Claudia C. D-vine copula based quantile regression[J]. Computation Statistics and Data Analysis, 2017, 110(1):1-18.
[31] Brechmann E C, Joe H. Truncation of vine copulas using fit indices[J]. Journal of Multivariate Analysis, 2015, 138:19-33.
[32] Nagler T, Bumann C, Czado C. Model selection in sparse high-dimensional vine copula models with an application to portfolio risk[J]. Journal of Multivariate Analysis, 2019, 172:180-192.
[33] Ding Z X, Granger C W J, Engle R F. A long memory property of stock market returns and a new model[J]. Journal of Empirical Finance, 1993, 1(1):83-106.
[34] 林宇, 陈王, 王一鸣,等. 典型事实、混合Copula函数与金融市场相依结构研究[J]. 中国管理科学, 2015, 23(4):20-29.Lin Y, Chen W, Wang Y M, et al. Study on dependency structure of financial markets based on the stylized facts and mixed Copula function[J]. Chinese Journal of Management Science, 2015, 23(4):20-29.
[35] 林宇. 典型事实、极值理论与金融市场动态风险测度研究[J]. 投资研究, 2012, 31(1):41-56.Lin Y. Measuring dynamic risk of financial markets based on stylized facts and extreme value theory[J]. Review of Investment Studies, 2012, 31(1):41-56.
[36] Lamoureux C G, Lastrapes W D. Forecasting stock-return variance:Toward an understanding of stochastic implied volatilities[J]. Review of Financial Studies, 1993, 6(2):293-326.
[37] Anastasios P, Claudia C, Harry J, et al. Model selection for discrete regular vine copulas[J]. Computational Statistics and Data Analysis, 2017, 106:138-152.
[38] 谢赤, 龙瑞, 曾志坚. 基于时变Copula的沪深300股指期现货高频价格相依结构测度[J]. 系统工程, 2016, 34(8):24-31.Xie C, Long R, Zeng Z J. Measuring dependence structure between high-frequency prices of CSI300 index futures and spots based on time-varying Copulas[J]. Systems Engineering, 2016, 34(8):24-31.
[39] 于文华, 魏宇, 康明惠. 不同时变Copula-EVT-ES模型精度比较研究[J]. 管理科学学报, 2015, 18(5):32-45.Yu W H, Wei Y, Kang M H. Comparative study on measurement precision of different time-varying Copula-EVT-ES models[J]. Journal of Management Sciences in China, 2015, 18(5):32-45.

基金

国家自然科学基金(71771032);国家社会科学基金(17BJY188);四川省应用研究基础项目(2017JY0158)
PDF(916 KB)

1017

Accesses

0

Citation

Detail

段落导航
相关文章

/