流域水资源消耗结构与产业结构高级化适配性研究

张丽娜, 吴凤平, 张陈俊, 庞庆华, 于倩雯

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (11) : 3009-3018.

PDF(1422 KB)
PDF(1422 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (11) : 3009-3018. DOI: 10.12011/1000-6788-2019-0016-10
论文

流域水资源消耗结构与产业结构高级化适配性研究

    张丽娜1, 吴凤平2, 张陈俊1, 庞庆华1, 于倩雯2
作者信息 +

The adaptability of basin water resources consumption structure and optimization of industrial structure

    ZHANG Lina1, WU Fengping2, ZHANG Chenjun1, PANG Qinghua1, YU Qianwen2
Author information +
文章历史 +

摘要

流域水资源消耗结构与产业结构密切相关,流域经济发展呈现产业结构高级化形态会引起水资源消耗结构的改变.从适配的角度实现直接促进产业结构升级和间接减少水资源消耗量,有利于落实双控行动和以水定产政策.在此形势下,结合流域水资源消耗结构与产业结构高级化适配的机理分析,针对现有二者关联测算方法存在的问题,立足弹性,借鉴Tapio模型,构建二者的适配度测算指标,用于测算二者同步变化的程度及方向,反映适配的动态性、交互性等时空变化特征,为产业经济-水生态效益的偏差测度提供新的思路.以长江支流——湖北省汉江流域为例,研究结果表明,从空间维度看,2003-2016年各区域适配度总和区间为[-27,143],武汉市取最大值143,尤其是2013-2016年武汉市的适配度不断提高,产业结构和用水结构不断优化;从时间维度看,2003-2016年流域的适配度总和区间为[-106,264],发现产业结构高级化有时会对二三产水资源消耗结构优化产生负面影响.因此,流域主管机构在制定或评估以水定产政策时,尤其针对适配度最低的随州市,在汲取武汉市相关调整经验的同时,要理性的看待产业结构高级化,正确看待各区域的发展阶段,更多注重产业结构的聚合质量,在双控行动硬约束下,推动区域产业结构的合理化变迁,夯实用水效率提高的长效机制.最后,以武汉市为例对比分析现有3种测算方法表明,适配度测算指标在经济学解释上对产业结构调整更具有指导价值.

Abstract

Basin water resources consumption structure and industrial structure are highly correlated and the optimization of industrial structure will change water resources consumption structure. From the perspective of adaptation, through directly promoting the upgrading of industrial structure and indirectly reducing water consumption, the double control actions and policy of planning industrial production based on water resources will be implemented fully. Combined with the analysis of the adaptability of basin water resources consumption structure and optimization of industrial structure, the existing problems of the existing methods are discussed. Based on the flexibility and Tapio model, this paper constructs the adaptability measurement index of basin water resources consumption structure and optimization of industrial structure. This index is used to measure the degree and direction of the simultaneous changes of basin water consumption structure and optimization of industrial structure, reflecting the dynamic and interactive characteristics of the adaptation. This index puts forward new ideas for the deviation measurement of industrial economy-water ecological benefit. This method is applied to calculate the sum adaptability of all regions as [-27,143] in Hanjiang River Basin in Hubei Province of Yangtze River from 2003 to 2016. Wuhan has taken the maximum value as 143. The adaptability, industrial structure and water structure of Wuhan City have been continuously improved from 2013 to 2016. This method is applied to calculate the adaptability as [-106,264] in this basin from 2003 to 2016. The reverse optimization of the industrial structure had a positive impact on the optimization of water resources in the secondary and tertiary industry. The basin authorities should rationally look at the optimization of the industrial structure when formulating or evaluating the policy of planning production by water resources, especially for Suizhou city with the lowest adaptability. The basin authorities should correctly consider the development stages of multi-regions within the basin, and pay more attention to the quality of the industrial structure. Then, the rationalization of regional industrial structure and the long-term mechanism for improving water efficiency can be implemented. Finally, our extended approach in compared with existing methods will be developed to guide the industrial structure adjustment in economic interpretation.

关键词

水资源 / 消耗结构 / 产业结构高级化 / 适配度 / 汉江流域

Key words

water resources / consumption structure / optimization of industrial structure / adaptability / Hanjiang River Basin

引用本文

导出引用
张丽娜 , 吴凤平 , 张陈俊 , 庞庆华 , 于倩雯. 流域水资源消耗结构与产业结构高级化适配性研究. 系统工程理论与实践, 2020, 40(11): 3009-3018 https://doi.org/10.12011/1000-6788-2019-0016-10
ZHANG Lina , WU Fengping , ZHANG Chenjun , PANG Qinghua , YU Qianwen. The adaptability of basin water resources consumption structure and optimization of industrial structure. Systems Engineering - Theory & Practice, 2020, 40(11): 3009-3018 https://doi.org/10.12011/1000-6788-2019-0016-10
中图分类号: TV213.4   

参考文献

[1] Milly P C D, Betancourt J, et al. Stationarity is dead:Whither water management?[J]. Science, 2008, 319(2):1-7.
[2] Eliasson J. The rising pressure of global water shortages[J]. Nature, 2015, 517(7532):6.
[3] Burrows W, Doherty J. Gradient-based model calibration with proxy-model assistance[J]. Journal of Hydrology, 2016, 533:114-127.
[4] 高而坤. 设定水资源消耗上限严格实行用水总量控制[J]. 中国水利, 2016(13):1-2. Gao E K. Set the upper limit of water consumption for controlling the total water amount strictly[J]. China Water Resources, 2016(13):1-2.
[5] 陈雷. 全面实施水资源消耗总量和强度双控行动着力保障经济社会持续健康发展[J]. 中国水利, 2016(23):21-24. Chen L. Implementation of double-control actions on total water resources consumption and intensity for ensuring the economic and social development[J]. China Water Resources, 2016(23):21-24.
[6] 干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011(5):4-16. Gan C H, Zheng R G, Yu D F. An empirical study on the effects of industrial structure on economic growth and fluctuations in China[J]. Economic Research, 2011(5):4-16.
[7] Atack J. Industrial structure and the emergence of the modern industrial corporation[J]. Explorations in Economic History, 1985, 22(1):29-52.
[8] Daly H E, Ntownsend K. Valuing the earth:Economics, ecology, ethics[M]. MIT Press, 1996.
[9] 张玲玲, 王宗志, 李晓惠, 等. 总量控制约束下区域用水结构调控策略及动态模拟[J]. 长江流域资源与环境, 2015, 24(1):90-96.Zhang L L, Wang Z Z, Li X H, et al. Study on regional water utilization structure controlling strategy and dynamic simulation within the gross volume constraints[J]. Resources and Environment in the Yangtze Basin, 2015, 24(1):90-96.
[10] 王福林, 吴丹. 基于水资源优化配置的区域产业结构动态演化模型[J]. 软科学, 2009, 23(5):92-96.Wang F L, Wu D. Regional industrial structure dynamic evolutionary model based on water resource optional allocation[J]. Soft Science, 2009, 23(5):92-96.
[11] 吴丹. 京津冀地区产业结构与水资源的关联性分析及双向优化模型构建[J]. 中国人口·资源与环境, 2018, 28(9):158-166. Wu D. Correlation analysis and bidirectional optimization model of industrial structure and water resources in Beijing-Tianjin-Hebei region[J]. China Population, Resources and Environment, 2018, 28(9):158-166.
[12] 南芳, 李杨, 孟艳玲. 唐山市产业结构与水资源消耗关系研究[J]. 经济研究导刊, 2010(20):45-46. Nan F, Li Y, Meng Y L. Study on the relationship between industrial structure and water resources consumption in Tangshan city[J]. Economic Research Guide, 2010(20):45-46.
[13] 刘轶芳, 刘彦兵, 黄姗姗. 产业结构与水资源消耗结构的关联关系研究[J]. 系统工程理论与实践, 2014, 34(4):861-869. Liu Y F, Liu Y B, Huang S S. Study on the correlation resources between industrial structure and water consumption structure[J]. Systems Engineering-Theory & Practice, 2014, 34(4):861-869.
[14] 张兵兵, 沈满洪. 工业用水与工业经济增长、产业结构变化的关系[J]. 中国人口·资源与环境, 2015, 25(2):9-14. Zhang B B, Shen M H. Relationship between the industrial water usage and the industrial economic growth and the industrial structural change[J]. China Population, Resources and Environment, 2015, 25(2):9-14.
[15] Gallagher L, Laflaive X, Zaeske A, et al. Embracing risk, uncertainty and water allocation reform when planning for Green Growth[J]. Aquatic Procedia, 2016, 6:23-29.
[16] Luyanga S, Miller R, Stage J. Index number analysis of Namibian water intensity[J]. Ecological Economics, 2006, 57(3):374-381.
[17] 陈东景. 我国工农业水资源使用强度变动的区域因素分解与差异分析[J]. 自然资源学报, 2012, 27(2):332-343. Chen D J. Regional factor decompositions and difference of the change in agriculture and industrial water intensity in China[J]. Journal of Natural Resources, 2012, 27(2):332-343.
[18] Ang B W. LMDI decomposition approach:A guide for implementation[J]. Energy Policy, 2015, 86:233-238.
[19] 张陈俊, 许静茹, 张丽娜, 等. 长江经济带水资源消耗时空差异驱动效应研究[J]. 资源科学, 2018, 40(11):2247-2259. Zhang C J, Xu J R, Zhang L N, et al. Driving effect of spatial-temporal difference in water resource consumption in the Yangtze River Economic Zone[J]. Resources Science, 2018, 40(11):2247-2259.
[20] 孙才志, 谢巍. 中国产业用水变化驱动效应测度及空间分异[J]. 经济地理, 2011, 31(4):666-672. Sun C Z, Xie W. Measurement of the driving effects on industrial water utilization change and its spatial difference[J]. Economic Geography, 2011, 31(4):666-672.
[21] Chai J, Liang T, Lai K K, et al. The future natural gas consumption in China:Based on the LMDI-STIRPAT-PLSR framework and scenario analysis[J]. Energy Policy, 2018, 119:215-225.
[22] Wang J, Hu M, Rodrigues J F D. An empirical spatiotemporal decomposition analysis of carbon intensity in China's industrial sector[J]. Journal of Cleaner Production, 2018, 195:133-144.
[23] 张延平, 李明生. 我国区域人才结构优化与产业结构升级的协调适配度评价研究[J]. 中国软科学, 2011(3):177-192. Zhang Y P, Li M S. Evaluation on coordination and matching degree between regional talent structure optimization and industrial structure upgrade in China[J]. China Soft Science Magazine, 2011(3):177-192.
[24] 付宏, 毛蕴诗, 宋来胜. 创新对产业结构高级化影响的实证研究——基于2000-2011年的省际面板数据[J]. 中国工业经济, 2013, 306(9):56-68. Fu H, Mao Y S, Song L S. Empirical analysis on the effect of innovation on advancement of industrial structure process-based on panel data of provinces from 2000 to 2011[J]. China Industrial Economics, 2013, 306(9):56-68.
[25] 刘悦, 郑玉航, 廖高可. 金融资源配置方式对产业结构影响的实证研究[J]. 中国软科学, 2016(8):149-158. Liu Y, Zheng Y H, Liao G K. An empirical study on the influence of financial resources allocation upon industrial structure[J]. China Soft Science Magazine, 2016(8):149-158.
[26] Tapio P. Towards a theory of decoupling:Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy, 2005, 12(2):137-151.
[27] OECD. Indicators to measure decoupling of environmental pressures from economic growth[R]. Paris:OECD, 2002.

基金

国家自然科学基金青年项目(41701610);中央高校基本科研业务费项目(CZB19020049);国家自然科学基金面上项目(71774048);湖北水事研究中心研究项目(2017B009)
PDF(1422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/