交通信息诱导下的混合用户均衡模型研究

刘凯, 周晶

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (2) : 415-425.

PDF(640 KB)
PDF(640 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (2) : 415-425. DOI: 10.12011/1000-6788-2018-1392-11
研究论文

交通信息诱导下的混合用户均衡模型研究

    刘凯1,2, 周晶2
作者信息 +

Study on the mixed user equilibrium model under the influence of traffic guidance information

    LIU Kai1,2, ZHOU Jing2
Author information +
文章历史 +

摘要

通过分析交通信息对出行者路径选择行为的影响,构建了一个同时考虑惯性出行者和非惯性出行者路径选择行为的混合用户均衡模型.随后,提出了求解混合用户模型的算法,通过算例对模型和算法的合理性进行验证,并探讨当出行者路径选择存在惯性行为时,交通信息是否能够缓解交通拥堵.研究发现交通信息虽然可以影响出行者的路径选择行为,但是可能会增加整个系统的总出行时间.而合适的信息渗透率有助于显著地减少整个系统的总出行时间,使得系统趋向于最优化.

Abstract

By analyzing the impact of traffic information on travelers' route choice behaviors, this paper developed a mixed user equilibrium model. And in the mixed user equilibrium model, we considered two types of travelers:Inertial choice travelers and non-inertial choice travelers. Then, numerical examples were provided to illustrate the application of the proposed mixed user equilibrium model, and explored whether traffic information would help to relieve congestion when the travelers' route choices are inertial. The results showed that the traffic guidance information can influence travelers' route choice inertial behavior, but can also lead to increase the system's total travel time. Moreover, an appropriate permeability of traffic information can help to reduce the system's total travel time and make the system tend to optimize. Such an understanding has important implications on traffic information compliance.

关键词

交通信息 / 混合用户均衡 / 路径选择 / 选择惯性行为

Key words

traffic information / mixed user equilibrium / route choice / inertial choice behavior

引用本文

导出引用
刘凯 , 周晶. 交通信息诱导下的混合用户均衡模型研究. 系统工程理论与实践, 2020, 40(2): 415-425 https://doi.org/10.12011/1000-6788-2018-1392-11
LIU Kai , ZHOU Jing. Study on the mixed user equilibrium model under the influence of traffic guidance information. Systems Engineering - Theory & Practice, 2020, 40(2): 415-425 https://doi.org/10.12011/1000-6788-2018-1392-11
中图分类号: U491   

参考文献

[1] Wardrop J G. Some theoretical aspects of road traffic research[C]//Proceeding of the Institution of the Institution of Civil Eng, Part II, 1952:325-378.
[2] Daganzo C F, Sheffi Y. On stochastic models of traffic assignment[J]. Transportation Science, 1977, 11(3):253-274.
[3] Simon H A. A behavioural model of rational choice[J]. Quarterly Journal of Economics, 1955, 69:99-118.
[4] Mahmassani H, Chang G. On boundedly rational user equilibrium in transportation systems[J]. Transportation Science, 1987, 21(2):89-99.
[5] Lou Y, Yin Y, Lawphongpanich S. Robust congestion pricing under boundedly rational user equilibrium[J]. Transportation Research Part B:Methodological, 2010, 44(1):15-28.
[6] Di X, Liu H X, Pang J S, et al. Boundedly rational user equilibria (BRUE):Mathematical formulation and solution sets[J]. Transportation Research Part B, 2013, 57(11):300-313.
[7] Zhao C L, Huang H J. Experiment of boundedly rational route choice behavior and the model under satisficing rule[J]. Transportation Research Part C:Emerging Technologies, 2016, 68:22-37.
[8] Train K E. Discrete choice methods with simulation[M]. Cambridge, England, UK:The Cambridge University Press, 2003.
[9] Chorus C G. Risk aversion, regret aversion and travel choice inertia:An experimental study[J]. Transportation Planning and Technology, 2014, 37(4):321-332.
[10] Xie C, Liu Z G. On the stochastic network equilibrium with heterogeneous choice inertia[J]. Transportation Research Part B, 2014, 66:90-109.
[11] Lou Y, Yin Y, Lawphongpanich S. Robust congestion pricing under boundedly rational user equilibrium[J]. Transportation Research Part B, 2010, 44(1):15-28.
[12] Chorus C, Dellaert B G C. Travel choice inertia:The joint role of risk aversion and learning[J]. Journal of Transport Economics and Policy, 2012, 46(1):139-155.
[13] Zhang J L, Yang H. Modeling route choice inertia in network equilibrium with heterogeneous prevailing choice sets[J]. Transportation Research Part C, 2015, 57:42-54.
[14] Xu H L, Yang H, Zhou J, et al. A route choice model with context-dependent value of time[J]. Transportation Science, 2017, 51(2):536-548.
[15] Jou R C. Modeling the impact of pre-trip information on commuter departure time and route choice[J]. Transportation Research Part B:Methodological, 2001, 35(10):887-902.
[16] Srinivasan K K, Mahmassani H S. Modeling inertia and compliance mechanisms in route choice behavior under real-time information[J]. Transportation Research Record, 2007, 1725:45-53.
[17] Tsuji H, Takahashi R, Kawashima H, et al. A stochastic approach for estimating the effectiveness of a route guidance system and its related parameters[J]. Transportation Science, 1985, 19(4):333-351.
[18] Mahmassani H S, Liu Y H. Models of user pre-trip and en-route switching decisions in response to real-time information[C]//Proceedings Volume from the 8th IFAC/IFIP/IFORS Symposium, 1997, 3:1363-1368.
[19] Ben-Elia E, Erev I, Shiftan Y. The combined effect of information and experience on drivers' route-choice behavior[J]. Transportation, 2008, 35(2):165-177.
[20] Ben-Elia E, Ettema D. Changing commuters' behavior using rewards:A study of rush-hour avoidance[J]. Transportation Research Part F, 2011, 14(5):354-368.
[21] Lo H K, Luo X W, Siu B W Y. Degradable transport network:Travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research Part B, 2006, 40(9):792-806.
[22] Lo H K, Tung Y K. Network with degradable links:Capacity analysis and design[J]. Transportation Research Part B, 2003, 37(4):345-363.
[23] Shao H, Lam H K W, Tam M L, et al. Modelling rain effects on risk-taking behaviours of multi-user classes in road networks with uncertainty[J]. Journal of Advanced Transportation, 2008, 42(3):265-290.
[24] Chen A, Zhou Z, Lam W H K. Modeling stochastic perception error in the mean-excess traffic equilibrium model[J]. Transportation Research Part B, 2011, 45(10):1619-1640.
[25] Szeto W Y, Lo H. Dynamic traffic assignment:Properties and extensions[J]. Transportmetrica, 2006, 2(1):31-52.
[26] Nagurney A, Zhang D. Projected dynamical systems in the formulation, stability analysis, and computation of fixed-demand traffic network equilibria[J]. Transportation Science, 1997, 31(2):147-158.
[27] Huang H J, Lam H K W. Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues[J]. Transportation Research Part B, 2002, 36(3):253-273.
[28] Liu P, Liao F, Huang H J, et al. Dynamic activity-travel assignment in multi-state supernetworks[J]. Transportmetrica, 2015, 12(7):572-590.
[29] Arnott R, Palma A D, Lindsey R. Does providing information to drivers reduce traffic congestion[J]. Transportation Research Part A:General, 1991, 25(5):309-318.
[30] Mahmassani H S, Jayakrishnan R. System performance and user response under real-time information in a congested traffic corridor[J]. Transportation Research Part A:General, 1991, 25(5):293-307.
[31] Al-Deek H M, Khattak A J, Thananjeyan P. A combined traveler behavior and system performance model with advanced traveler information systems[J]. General Information, 1998, 32(7):479-493.

基金

国家自然科学基金(71571097);安徽省高校人文社会科学研究重点项目(SK2018A0025)
PDF(640 KB)

530

Accesses

0

Citation

Detail

段落导航
相关文章

/