中国省际差异化能源转型背景下的CO2排放预测

柴建, 杜孟凡, 周晓阳, 梁婷

系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (8) : 2005-2018.

PDF(1209 KB)
PDF(1209 KB)
系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (8) : 2005-2018. DOI: 10.12011/1000-6788-2018-1002-14
论文

中国省际差异化能源转型背景下的CO2排放预测

    柴建1,2, 杜孟凡1, 周晓阳1,2, 梁婷3
作者信息 +

The prediction of CO2 emission in the background of China's provincial differentiated energy transformation

    CHAI Jian1,2, DU Mengfan1, ZHOU Xiaoyang1,2, LIANG Ting3
Author information +
文章历史 +

摘要

为促进中国能源消费转型,减少CO2排放,本文首先利用俱乐部收敛检验等方法对不同类型化石能源消费的省际差异演变及原因进行实证研究.其次,基于收敛聚类结果利用分层(组)预测方法对不同消费层级未来中短期内的CO2排放进行预测.研究发现:由于经济发展对煤炭消费的依赖程度不同,各省煤炭消费分别向3个不同水平收敛;在能源强度及结构效应的驱动下,各省石油和天然气消费整体向上收敛.在未来,Clubs2省份将主导全国总的煤炭消费CO2排放趋势,进而对化石能源总CO2排放产生显著影响;同时,未来的原油消费将增加总CO2排放量,而天然气消费具有减排优势;另外,各省CO2排放量及增速仍将存在较大差异.以上发现对建立特定的区域能源消费及排放政策具有重要启示:Clubs2中的省份是控制煤炭消费,减少CO2排放的重点区域;严控高收入、重工业省份的原油消费将会进一步降低总CO2排放量.

Abstract

In order to promote the transformation of China's energy consumption and reduce CO2 emissions, this paper first uses the club convergence test method to conduct a detailed empirical study of the differences in the inter-provincial evolution of different types of fossil energy consumption. Then, based on the results of convergence clustering, a hierarchical (group) forecasting method is used to predict short-term CO2 emissions at different levels. The results show that due to the different dependence of economic development on coal consumption, coal consumption of various provinces converges to three levels. Driven by the energy intensity and structural effects, the province's oil and natural gas consumption have generally converged upward. The forecasts indicate that CO2 emissions from fossil fuels will be dominated by coal, which is dominated by the 13 provinces in clubs2. Meanwhile, oil consumption will increase CO2 emissions, natural gas will reduce total emissions, and provincial CO2 emissions and its growth rates will still have large differences. These findings have important implications for the establishment of specific regional energy consumption and emission policies:clubs2's provinces are key areas for controlling coal consumption and reducing CO2 emissions; strictly controlling oil consumption in high-income and heavy-industry provinces will further reduce total CO2 emissions.

关键词

能源消费转型 / 省际收敛检验 / CO2排放 / 分层(组)预测

Key words

energy consumption transformation / interprovincial convergence test / CO2 emissions / hierarchical (group) forecast

引用本文

导出引用
柴建 , 杜孟凡 , 周晓阳 , 梁婷. 中国省际差异化能源转型背景下的CO2排放预测. 系统工程理论与实践, 2019, 39(8): 2005-2018 https://doi.org/10.12011/1000-6788-2018-1002-14
CHAI Jian , DU Mengfan , ZHOU Xiaoyang , LIANG Ting. The prediction of CO2 emission in the background of China's provincial differentiated energy transformation. Systems Engineering - Theory & Practice, 2019, 39(8): 2005-2018 https://doi.org/10.12011/1000-6788-2018-1002-14
中图分类号: F205    F206   

参考文献

[1] Intergovernmental Panel on Climate Change (IPCC). Climate change 2007:The fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2007.
[2] BP. bp-statistical-review-of-world-energy-2017-full-report, 2017[R]. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.
[3] 国家发展和改革委员会. 中美气候变化联合主席声明[R]. 2015.
[4] 国家发展和改革委员会. 能源发展"十三五"规划[R]. 2016. http://www.ndrc.gov.cn/gzdt/201701/W020170117348373245462.pdf.
[5] 王明喜, 胡毅, 郭冬梅,等. 低碳经济:理论实证研究进展与展望[J]. 系统工程理论与实践, 2017, 37(1):17-34.Wang M X, Hu Y, Guo D M, et al. Low-carbon economy:Theoretical and empirical progress and Prospects[J]. Systems Engineering-Theory & Practice, 2017, 37(1):17-34.
[6] Pain S. Power through the ages[J]. Nature, 2017. doi:10.1038/d41586-017-07506-z.
[7] Huang H, Yan Z. Present situation and future prospect of hydropower in China[J]. Renewable & Sustainable Energy Reviews, 2011, 13(6):1652-1656.
[8] Zhou S, Tong Q, Yu S, et al. Role of non-fossil energy in meeting China's energy and climate target for 2020[J]. Energy Policy, 2012, 51(C):14-19.
[9] Musa S D, Tang Z, Ibrahim A O, et al. China's energy status:A critical look at fossils and renewable options[J]. Renewable & Sustainable Energy Reviews, 2018, 81(2):2281-2290.
[10] 马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015-2050):可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28(2):8-18.Ma L M, Shi D, Pei Q B. Low-carbon transformation of China's energy in 2015-2050:Renewable energy development and feasible path[J]. China Population Resources and Environment, 2018, 28(2):8-18.
[11] Wang C, Wang F, Zhang X, et al. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang[J]. Renewable & Sustainable Energy Reviews, 2017, 67:51-61.
[12] Liu T, Xu G, Cai P, et al. Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country[J]. Renewable Energy, 2011, 36(4):1284-1292.
[13] Ren J, Sovacool B K. Prioritizing low-carbon energy sources to enhance China's energy security[J]. Energy Conversion & Management, 2015, 92:129-136.
[14] 国家发展和改革委员会. 能源生产和消费革命战略(2016-2030)[R]. 2017. http://ghs.ndrc.gov.cn/ghwb/gjjgh/201705/W020170517396570585594.pdf.
[15] Duro J A, Alcántara V, Padilla E. International inequality in energy intensity levels and the role of production composition and energy efficiency:An analysis of OECD countries[J]. Ecological Economics, 2010, 69(12):2468-2474.
[16] Clarke-Sather A, Qu J, Qin W, et al. Carbon inequality at the sub-national scale:A case study of provincial-level inequality in CO2 emissions in China 1997-2007[J]. Energy Policy, 2011, 39(9):5420-5428.
[17] Grunewald N, Jakob M, Mouratiadou I. Decomposing inequality in CO2 emissions:The role of primary energy carriers and economic sectors[J]. Ecological Economics, 2014, 100(4):183-194.
[18] 康晓娟, 杨冬民. 基于泰尔指数法的中国能源消费区域差异分析[J]. 资源科学, 2010, 32(3):485-490.Kang X J, Yang D M, An analysis on the difference of regional energy consumption in China based on the method of the Theil index[J]. Resources Science, 2010, 32(3):485-490.
[19] Strazicich M C, List J A. Are CO2 emission levels converging among industrial countries?[J]. Environmental & Resource Economics, 2003, 24(3):263-271.
[20] Aldy J E. Per capita carbon dioxide emissions:Convergence or divergence?[J]. Environmental & Resource Economics, 2006, 33(4):533-555.
[21] Barassi M R, Cole M A, Elliott R J R. The stochastic convergence of CO2 emissions:A long memory approach[J]. Environmental & Resource Economics, 2011, 49(3):367-385.
[22] Herrerias M J. The environmental convergence hypothesis:Carbon dioxide emissions according to the source of energy[J]. Energy Policy, 2013, 61(10):1140-1150.
[23] Burnett J W, Madariaga J. The convergence of U.S. state-level energy intensity[J]. Energy Economics, 2017, 62:357-370.
[24] 陈迅, 王春宝, 张勇,等. 中国地区能源强度与经济的同步收敛性研究[J]. 管理工程学报, 2016, 30(3):216-223.Chen X, Wang C B, Zhang Y, et al. The simultaneous convergence of energy intensity and economy in China[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30(3):216-223.
[25] 赵金楼, 李根, 苏屹,等. 我国能源效率地区差异及收敛性分析——基于随机前沿分析和面板单位根的实证研究[J]. 中国管理科学, 2013, 21(2):175-184.Zhao J L, Li G, Su Q, et al. Regional differences and convergence analysis of energy efficiency in China:On stochastic frontier analysis and panel unit root[J]. Chinese Journal of Management Science, 2013, 21(2):175-184.
[26] Meng M, Payne J E, Lee J. Convergence in per capita energy use among OECD countries[J]. Energy Economics, 2013, 36(3):536-545.
[27] Payne J E, Vizek M, Lee J. Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks[J]. Renewable & Sustainable Energy Reviews, 2017, 70:715-728.
[28] Payne J E, Vizek M, Lee J. Stochastic convergence in per capita fossil fuel consumption in U.S. states[J]. Energy Economics, 2017, 62:382-395.
[29] Herrerias M J, Aller C, Ordónez J. Residential energy consumption:A convergence analysis across Chinese regions[J]. Energy Economics, 2017, 62:371-381.
[30] Mishra V, Smyth R. Conditional convergence in Australia's energy consumption at the sector level[J]. Energy Economics, 2016, 62:396-403.
[31] Yue T, Long R, Chen H, et al. The optimal CO2 emissions reduction path in Jiangsu province:An expanded IPAT approach[J]. Applied Energy, 2013, 112(4):1510-1517.
[32] 刘晴川, 李强, 郑旭煦. 基于化石能源消耗的重庆市二氧化碳排放峰值预测[J]. 环境科学学报, 2017, 37(4):1582-1593.Liu Q C, Li Q, Zheng X X. The prediction of carbon dioxide emissions in Chongqing based on fossil fuel combustion[J]. Acta Scientiae Circumstantiae, 2017, 37(4):1582-1593.
[33] Yuan J, Xu Y, Hu Z, et al. Peak energy consumption and CO2 emissions in China[J]. Energy Policy, 2014, 68(2):508-523.
[34] Liu Z, Guan D, Moore S, et al. Steps to China's carbon peak[J]. Nature, 2015, 522(7556):279-281.
[35] Niu S, Liu Y, Ding Y, et al. China's energy systems transformation and emissions peak[J]. Renewable & Sustainable Energy Reviews, 2016, 58:782-795.
[36] Phillips P C B, Sul D. Transition modeling and econometric convergence tests[J]. Econometrica, 2007, 75(6):1771-1855.
[37] Phillips P C B, Sul D. Economic transition and growth[J]. Journal of Applied Econometrics, 2009, 24(7):1153-1185.
[38] Hyndman R, Lee A, Wang E, et al. Hts:Hierarchical and grouped time series[EB/OL]. R package version 5.1.4., 2017, https://CRAN.R-project.org/package=hts.
[39] Hyndman R J, Ahmed R A, Athanasopoulos G, et al. Optimal combination forecasts for hierarchical time series[J]. Computational Statistics & Data Analysis, 2011, 55(9):2579-2589.
[40] Hyndman R J, Lee A J, Wang E. Fast computation of reconciled forecasts for hierarchical and grouped time series[J]. Computational Statistics & Data Analysis, 2016, 97:16-32.
[41] Wickramasuriya S L, Athanasopoulos G, Hyndman R J. Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization[J]. Monash Econometrics & Business Statistics Working Papers, 2017(4):1-45.
[42] 时佳瑞, 汤铃, 余乐安,等. 基于CGE模型的煤炭资源税改革影响研究[J]. 系统工程理论与实践, 2015, 35(7):1698-1707.Shi J R, Tang L, Yu L A, et al. Impacts of coal resource tax reform on China's economy based on a CGE model[J]. Systems Engineering-Theory & Practice, 2015, 35(7):1698-1707.
[43] Ang B W, Zhang F Q, Choi K H. Factorizing changes in energy and environmental indicators through decomposition[J]. Energy, 2014, 23(6):489-495.

基金

国家自然科学基金(71473155,71874133);陕西省青年科技新星项目(2016KJXX14)
PDF(1209 KB)

746

Accesses

0

Citation

Detail

段落导航
相关文章

/