中国制造业能源拥挤效应研究:基于RAM-DEA模型的分析

陈真玲, 赵伟刚, 李金铠

系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (7) : 1831-1844.

PDF(882 KB)
PDF(882 KB)
系统工程理论与实践 ›› 2019, Vol. 39 ›› Issue (7) : 1831-1844. DOI: 10.12011/1000-6788-2018-0102-14
论文

中国制造业能源拥挤效应研究:基于RAM-DEA模型的分析

    陈真玲1, 赵伟刚2, 李金铠3
作者信息 +

Research on energy congestion effects in China's manufacturing sector: An analysis based on RAM-DEA

    CHEN Zhenling1, ZHAO Weigang2, LI Jinkai3
Author information +
文章历史 +

摘要

能源拥挤效应是指产出随着能源要素投入的增加而减少的非正常经济现象.为了检验中国制造业是否存在能源拥挤效应,提高制造业低碳发展能力,根据产出异质性能源拥挤效应可分解为期望能源拥挤和非期望能源拥挤.利用RAM-DEA模型分别建立管理处置和自由处置下期望能源拥挤和非期望能源拥挤模型,对中国制造业28个子行业进行实证研究.研究结果表明:2000年以来中国制造业行业非期望能源拥挤效应的程度越来越严重,到2014年制造业行业存在大约96260万吨标准煤的能源浪费;大部分制造业行业的能源效率较低,且行业差异较大;从能源无效的来源来看,传统制造业主要是拥挤无效,先进制造业主要是技术无效,而传统化工行业和能源密集型产业是拥挤无效和技术无效兼而有之;近年来期望能源拥挤无论在发生频率上还是在数量上都有了一定的改善,这表明越来越多的制造业行业开始进行低碳技术创新.研究结论对制造业节能减排产业结构优化,产能过剩风险预警机制建立具有重要的政策启示.

Abstract

The energy congestion effects refer to the abnormal economic phenomenon that output decreases with the increase of energy input. In order to investigate energy congestion effects in manufacturing sector and improve its low-carbon operational capability. Energy congestion effects are decomposed into desirable energy congestion and undesirable energy congestion according to the heterogeneity of output. The RAM-DEA model is used to establish the desirable energy congestion and undesirable energy congestion models under natural disposability and managerial disposability respectively. An empirical study on 28 sub-industries of Chinese manufacturing sector is conducted. Empirical results show that:Undesirable energy congestion have occurred in the manufacturing sector and the degree of undesirable energy congestion is increasing since 2000. Especially in the year of 2014, the amount of 962.6 million tons of coal equivalent are wasted. Most of China's manufacturing industries have poor performance of energy efficiency and there are huge gaps among sub-industries. If energy inefficiency is decomposed into congestion inefficiency and pure technical inefficiency, the traditional manufacturing industries are mainly suffered from congestion inefficiency, and the advanced manufacturing industries are mainly suffered from pure technical inefficiency, while the traditional chemical industries and energy intensive industries are suffered from both congestion and pure technical inefficiency. Additionally, the occurrence of desirable energy congestion had been improved in terms of both frequency and quantity from 2000 to 2014, which indicates that more and more China's manufacturing industries are undergoing a low-carbon technology innovation. The research conclusions have important policy implications for energy-saving and emission reduction, industrial structure optimization, as well as risk warning mechanism establishment for the over-capacity in the manufacturing sector.

关键词

制造业 / 期望能源拥挤 / 非期望能源拥挤 / RAM-DEA

Key words

manufacturing sector / desirable energy congestion / undesirable energy congestion / range-adjusted measure data envelopment analysis (RAM-DEA)

引用本文

导出引用
陈真玲 , 赵伟刚 , 李金铠. 中国制造业能源拥挤效应研究:基于RAM-DEA模型的分析. 系统工程理论与实践, 2019, 39(7): 1831-1844 https://doi.org/10.12011/1000-6788-2018-0102-14
CHEN Zhenling , ZHAO Weigang , LI Jinkai. Research on energy congestion effects in China's manufacturing sector: An analysis based on RAM-DEA. Systems Engineering - Theory & Practice, 2019, 39(7): 1831-1844 https://doi.org/10.12011/1000-6788-2018-0102-14
中图分类号: F124.6   

参考文献

[1] 席鹏辉, 梁若冰, 谢贞发,等. 财政压力、产能过剩与供给侧改革[J]. 经济研究, 2017(9):86-102. Xi P H, Liang R B, Xie Z F, et al. Fiscal stress, excess capacity and supply-side reform[J]. Economic Research Journal, 2017(9):86-102.
[2] 陈关聚. 中国制造业全要素能源效率及影响因素研究——基于面板数据的随机前沿分析[J]. 中国软科学, 2014(1):180-192. Chen G J. Research on total factor energy efficiency and influencing factors of Chinese manufacturing industry-Based on panel data random frontier analysis[J]. China Soft Science Magazine, 2014(1):180-192.
[3] 段玉婉, 杨翠红. 中国与日本能源消耗和CO2排放差异的空间结构分解[J]. 系统工程理论与实践, 2017, 37(8):2083-2090. Duan Y W, Yang C H. A spatial structure decomposition of Chinese and Japanese energy consumption and CO2 emissions[J]. Systems Engineering-Theory & Practice, 2017, 37(8):2083-2090.
[4] 王兵, 吴延瑞, 颜鹏飞. 环境管制与全要素生产率增长:APEC的实证研究[J]. 经济研究, 2008(5):19-32. Wang B, Wu Y R, Yan P F. Environmental regulation and total factor productivity growth:An empirical study of the APEC economies[J]. Economic Research Journal, 2008(5):19-32.
[5] Jaffe A B, Peterson S R, Portney P R, et al. Environmental regulation and the competitiveness of U.S. manufacturing:What does the evidence tell us?[J]. Journal of Economic Literature, 1995, 33(1):132-163.
[6] 林伯强, 刘泓汛. 对外贸易是否有利于提高能源环境效率——以中国工业行业为例[J]. 经济研究, 2015(9):127-141. Lin B Q, Liu H X. Whether foreign trade is beneficial to improving the efficiency of energy environment-Taking China's industrial industry as an example[J]. Economic Research Journal, 2015(9):127-141.
[7] Cooper W W, Deng H, Gu B, et al. Using DEA to improve the management of congestion in Chinese industries (1981-1997)[J]. Socio-Economic Planning Sciences, 2001, 35(4):227-242.
[8] Zhou D Q, Meng F Y, Bai Y, et al. Energy efficiency and congestion assessment with energy mix effect:The case of APEC countries[J]. Journal of Cleaner Production, 2017(142):819-828.
[9] Färe R, Grosskopf S, Lovell C A K. The measurement of efficiencies of production[M]. Kluwer-Nihoff Publishing, Boston, 1985[2018-09-23].
[10] Färe R, Grosskopf S, Lovell C A K. Production frontiers[M]. Cambridge:Cambridge University Press, 1994.
[11] Cooper W W, Thompson R G, Thrall R M. Chapter 1 introduction:Extensions and new developments in DEA[J]. Annals of Operations Research, 1996, 66(1):1-45.
[12] Cooper W W, Deng H, Huang Z M, et al. A one-model approach to congestion in data envelopment analysis[J]. Socio-Economic Planning Sciences, 2002, 36(4):231-238.
[13] Noura A A, Hosseinzadeh L F, Jahanshahloo G R, et al. A new method for measuring congestion in data envelopment analysis[J]. Socio-Economic Planning Sciences, 2010, 44(4):240-246.
[14] Wei Q, Yan H. Congestion and returns to scale in data envelopment analysis[J]. European Journal of Operational Research, 2004, 153(3):641-660.
[15] Tone K, Sahoo B K. Degree of scale economies and congestion:A unified DEA approach[J]. European Journal of Operational Research, 2004, 158(3):755-772.
[16] 王兆华, 丰超. 中国区域全要素能源效率及其影响因素分析——基于2003-2010年的省际面板数据[J]. 系统工程理论与实践, 2015, 35(6):1361-1372. Wang Z H, Feng C. Total factor energy efficiency calculation and its influencing factors analysis in China[J]. Systems Engineering-Theory & Practice, 2015, 35(6):1361-1372.
[17] 杨越, 成力为. 成本视角下全要素能源生产率评价与解构[J]. 系统工程理论与实践, 2017, 37(9):2306-2319.Yang Y, Cheng L W. Evaluating and decomposing of total factor energy productivity based on cost perspective[J]. Systems Engineering-Theory & Practice, 2017, 37(9):2306-2319.
[18] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3):498-509.
[19] Wang K, Lu B, Wei Y M. China's regional energy and environmental efficiency:A range-adjusted measure based analysis[J]. Applied Energy, 2013(112):1403-1415.
[20] 邓忠奇. 方向距离函数中方向向量的最优选择[J]. 系统工程理论与实践, 2016, 36(4):934-944.Deng Z Q. The optimal choice of direction vector in a direction distance function[J]. Systems Engineering-Theory & Practice, 2016, 36(4):934-944.
[21] 李小胜, 安庆贤, 申真. "十二五"时期中国能源全要素生产率研究[J]. 系统工程理论与实践, 2017, 37(6):1489-1498.Li X S, An Q X, Shen Z. The energy total factor productivity during the "Twelfth Five-Year plan" of China[J]. Systems Engineering-Theory & Practice, 2017, 37(6):1489-1498.
[22] Cooper W W, Park K S, Pastor J T. RAM:A range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA[J]. Journal of Productivity Analysis, 1999, 11(1):5-42.
[23] Sueyoshi T, Goto M, Ueno T. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies[J]. Energy Policy, 2010, 38(4):1675-1688.
[24] Wang K, Yu S, Zhang W. China's regional energy and environmental efficiency:A DEA window analysis based dynamic evaluation[J]. Mathematical & Computer Modelling, 2013, 58(5-6):1117-1127.
[25] Emrouznejad A, Yang G L. CO2 emissions reduction of Chinese light manufacturing industries:A novel RAM-based global Malmquist Luenberger productivity index[J]. Energy Policy, 2016(96):397-410.
[26] Wu J, An Q, Xiong B, et al. Congestion measurement for regional industries in China:A data envelopment analysis approach with undesirable outputs[J]. Energy Policy, 2013(57):7-13.
[27] Chen L, Wang Y, Wang L. Congestion measurement under different policy objectives:An analysis of Chinese industry[J]. Journal of Cleaner Production, 2016(112):2943-2952.
[28] Färe R, Grosskopf S, Lovel C A K, et al. Multilateral productivity comparison when some outputs are undesirable:A nonparametric approach[J]. The Review of Economics and Statistics, 1989, 71:90-98.
[29] Sueyoshi T, Goto M. Returns to scale and damages to scale under natural and managerial disposability:Strategy, efficiency and competitiveness of petroleum firms[J]. Energy Economics, 2012, 34(3):645-662.
[30] Sueyoshi T, Goto M. Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment:Comparison between Japanese electric power industry and manufacturing industries[J]. Energy Economics, 2012, 34(3):686-699.
[31] 杨凯, 王要武, 薛维锐. 区域梯度发展模式下我国工业生态效率区域差异与对策[J]. 系统工程理论与实践, 2013, 33(12):3095-3102.Yang K, Wang Y W, Xue W R. Industrial eco-efficiency regional differences and anti-gradient development strategy under regional gradient development model in China[J]. Systems Engineering-Theory & Practice, 2013, 33(12):3095-3102.
[32] Sueyoshi T, Goto M. Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment[J]. Energy Economics, 2016(55):173-188.
[33] Seiford L M, Zhu J. Modeling undesirable factors in efficiency evaluation[J]. European Journal of Operational Research, 2002(142):16-20.
[34] Zhang N, Zhou P, Kung C C. Total-factor carbon emission performance of the Chinese transportation industry:A bootstrapped non-radial Malmquist index analysis[J]. Renewable & Sustainable Energy Reviews, 2015(41):584-593.
[35] 陈诗一. 中国工业分行业统计数据估算:1980-2008[J]. 经济学(季刊), 2011(3):735-776. Chen S Y. Estimation of China's industrial sub-industry statistics:1980-2008[J]. China Economic Quarterly, 2011(3):735-776.
[36] 邵帅, 张曦, 赵兴荣. 中国制造业碳排放的经验分解与达峰路径——广义迪氏指数分解和动态情景分析[J]. 中国工业经济, 2017(3):44-63. Shao S, Zhang X, Zhao X R. Empirical decomposition and peaking pathway of carbon dioxide emissions of China's manufacturing sector-Generalized Divisia index method and dynamic scenario analysis[J]. China's Industrial Economy, 2017(3):44-63.
[37] Mi Z F, Pan S Y, Yu H, et al. Potential impacts of industrial structure on energy consumption and CO2 emission:A case study of Beijing[J]. Journal of Cleaner Production, 2015(103):455-462.
[38] IPCC. IPCC guidelines for national greenhouse gas inventories[EB/OL]. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html, 2006.

基金

国家自然科学基金(71704047,71601020,71473070);中国博士后科学基金面上项目(2017M620821);教育部人文社科规划项目(17YJC90015);河南省社科规划项目(2018BJJ012);河南财经政法大学青年拔尖人才资助计划
PDF(882 KB)

370

Accesses

0

Citation

Detail

段落导航
相关文章

/