通过构建随机动态规划模型分析了考虑两类顾客驾驶行为可转变的汽车租赁预订容量控制问题,系统的考察了当企业运用智能设备对顾客行为进行监测,并事后对顾客实施价格补贴策略时,对汽车租赁的预订限分配以及顾客行为转变的动态影响过程.由于动态规划模型维度较高,提出单日决策收益与多日决策收益(周期性决策)两种近似算法进行求解,并通过数值模拟验证了两种算法的有效性.研究给出了提前期随机和租期不确定前提下,预订限的基本分配原则,得到以下结论:1)多日决策收益更逼近最大期望总收益;2)当顾客行为不变时,租赁企业在实施补贴策略时,期望总收益会随着补贴的增加而单调不增;3)当补贴策略促使顾客选择良好行为的可能性增加时,增加补贴反而会增加企业的期望总收益.研究结果将为汽车租赁企业的预订决策提供支持.
Abstract
Considering the transfer of the customers' behavior, this paper has builded a stochastic dynamic programming model to study dynamic booking capacity control in the car rental system. When the customers' driving behavior can be monitored by intelligent equipment, we have researched how the price subsidy policy affected the capacity booking control process and customers' behavior. Because of the higher dimension of the model, we have proposed two dynamic programming decomposition approaches. One decomposition has approached dynamic programming by daily (ADPD), the other has approached dynamic programming by periodicity (ADPP). Finally, numerical simulations have verified the effectiveness of the proposed algorithms. The finding gives the principal of the capacity booking control, and the conclusions are as follows:1) The expectation profit of ADPP gets closer to maximum expectation profit; 2) When the customers' behavior has not been changed, the expected total profit will not increase with the increase of subsidy; 3) When the subsidy strategy increases the possibility of choosing good behavior, the increase of subsidy will increase the expected total profit of the enterprise. The results will provide a support for capacity booking control in the car rental system.
关键词
随机动态规划模型 /
容量预订控制 /
顾客行为转变 /
价格补贴
{{custom_keyword}} /
Key words
stochastic dynamic programming model /
capacity booking control /
the transfer of the customers' behavior /
price subsidies
{{custom_keyword}} /
中图分类号:
F275
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Tainiter M. Some stochastic inventory models for rental situations[J]. Management Science, 1964, 11(2):316-326.
[2] Whisler W. A stochastic inventory model for rented equipment[J]. Management Science, 1967, 13(9):640-647.
[3] Geraght M K, Johnson E. Revenue management saves national car rental[J]. Interfaces, 1997, 27(1):107-127.
[4] Julian E P. Strategic and tactical fleetplanning for the car rental Industry[D]. University of Miami, 2000.
[5] 陈旭. 基于收益管理的汽车出租定价与车辆配置[J]. 系统工程理论方法应用, 2005, 14(3):264-267.Chen X. Study on pricing and allocation for car rental based on revenue management[J]. Systems Engineering Theory Methodology Application, 2005, 14(3):264-267.
[6] Yang Y, Jin W, Hao X. Car rental logistics problem:A review of literature[C]//2008 IEEE International Conference on Service Operations and Logistics, and Informatics, 2008:2815-2819.
[7] 杨亚璪. 基于收益管理的汽车租赁车队优化调度模型及算法研究[D]. 广州:华南理工大学, 2010. Yang Y C. Research on optimizing planning models and algorithms of car rental fleet based on revenue management[D]. Guangzhou:South China University of Technology, 2010.
[8] Guerriero F, Miglionico G, Olivito F. Revenue management policies for the truck rental industry[J]. Transportation Research Part E, 2012, 48(1):202-214.
[9] Guerriero F, Olivito F. Revenue models and policies for the car rental industry[J]. Journal of Mathematical Modelling & Algorithms in Operations Research, 2014, 13(3):247-282.
[10] 刘家利, 马祖军. 存在车辆租赁及共享且有时间窗的多配送中心开环VRP[J]. 系统工程理论与实践, 2013, 33(3):666-675.Liu J L, Ma Z J. Multi-depot open vehicle routing problem with time windows based on vehicle leasing and sharing[J]. Systems Engineering-Theory & Practice, 2013, 33(3):666-675.
[11] Schmidt H. Simultaneous control of demand and supply in revenue management with flexible capacity[D]. Germany:Clausthal University of Technology, 2009.
[12] Haensel A, Mederer M, Schmidt H. Erratum:Revenue management in the car rental industry:A stochastic programming approach[J]. Journal of Revenue & Pricing Management, 2011, 10(3):290-290.
[13] Steinhardt C. Integrated revenue management approaches for capacity control with planned upgrades[J]. European Journal of Operational Research, 2012, 223(2):380-391.
[14] Li D, Pang Z. Dynamic booking control for car rental revenue management:A decomposition approach[J]. European Journal of Operational Research, 2016, 256(3):850-867.
[15] Tang C S, Deo S. Rental price and rental duration under retail competition[J]. European Journal of Operational Research, 2008, 187(3):806-828.
[16] Gans N, Savin S. Pricing and capacity rationing for rentals with uncertain durations[J]. Management Science, 2007, 53(3):390-407.
[17] Madden T, Russell R A. Modeling the rental car pricing and relocation problem[J]. International Journal of Revenue Management, 2012, 6(3/4):246-257.
[18] Miller B L. A queuing reward system with several customer classes[J]. Management Science, 1969, 16(3):234-245.
[19] Lerzan Örmeci E, Apostolos B, Jan van der W. Admission policies for a two class loss system[J]. Stochastic Models, 2001, 17(4):513-539.
[20] Savin S V, Cohen M A, Gans N, et al. Capacity management in rental businesses with two customer bases[J]. Operations Research, 2005, 53(4):617-631.
[21] Papier F, Thonemann U W. Capacity rationing in rental systems with two customer classes and batch arrivals[J]. Omega, 2011, 39(1):73-85.
[22] Jain A, Moinzadeh K, Dumrongsiri A. priority allocation in a rental model with decreasing demand[J]. Manufacturing & Service Operations Management, 2015, 17(2):236-248.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71531003,71432003,71772025);首都流通业研究基地项目(JD-YB-2018-002)
{{custom_fund}}