针对当前产品方案评价方法对随机性、区间性、模糊性等混合不确定性信息考虑不足,其量化过程没有真实反映产品方案本质属性的问题,提出产品方案评价中考虑混合不确定性信息的产品多属性方案评价方法.对混合不确定性信息进行精准表征,并构造容信度科学、精确量化混合不确定性信息;同时,构建基于混合不确定性信息容信度的产品方案评价模型,计算混合不确定性信息的容信度和理想度,利用方案优选定理实现产品方案的评价优选,并通过实例进行了验证.
Abstract
The hybrid uncertainty information is insufficiently taking into account in the existed evaluation methods of product scheme, such as, stochastic information, fuzzy information, interval information, and so on. The quantization process did not reflect the nature of the product scheme. So, the multi-attribute evaluation method for product scheme under hybrid uncertainty information is presented in this paper. First, the hybrid uncertainty information is accurate characterizes and calculates use the contains information content. Second, the evaluation model for product scheme based on the contains information content of the hybrid uncertainty information is constructed, and the contains information content and the ideal quantity are calculated. The optimal scheme is selected using the scheme optimization theorem. Finally, the evaluation method is verified by an example in this paper.
关键词
混合不确定性信息 /
方案评价 /
容信度 /
理想度 /
无人搬运汽车机器人
{{custom_keyword}} /
Key words
hybrid uncertainty information /
scheme evaluation /
contains information content /
ideal quantity /
automatic transport car robots
{{custom_keyword}} /
中图分类号:
TH218
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李伟伟,易平涛,郭亚军. 混合评价信息的随机转化方法和应用[J]. 控制与决策, 2014, 29(4):753-758.Li W W, Yi P T, Guo Y J. Blended evaluation information random transformation method and its application[J]. Control and Decision, 2014, 29(4):753-758.
[2] 谢平,李德,陈广才,等. 基于贝叶斯公式的湖泊富营养化随机评价方法及其验证[J]. 长江流域资源与环境, 2005, 14(2):224-238.Xie P, Li D, Chen G C, et al. A lake eutrophication stochastic assessment method by using empirical frequency curve and its verification[J]. Resources and Environment in the Yangtze Basin, 2005, 14(2):224-238.
[3] Chen D P, Chu X N, Sun X W, et al. An information axiom based decision making approach under hybrid uncertain environments[J]. Information Sciences, 2015, 312(8):25-39.
[4] Chen D P, Chu X N, Yang X Y, et al. PSS solution evaluation considering sustainability under hybrid uncertain environments[J]. Expert Systems with Applications, 2015, 42(8):5822-5838.
[5] Zhang R J, Qiu J W, Jia Q X, et al. An improved fuzzy evaluation method for design schemes based on the information axiom[J]. International Journal of Computer Integrated Manufacturing, 2014, 27(11):1067-1078.
[6] Suh N P. The principles of design[M]. New York:Oxford University Press, 1990.
[7] Diyar A, Author V, Osman K, et al. Conceptual design evaluation using interval type-2 fuzzy information axiom computers in industry[J]. Fuzziness in Industry and Applications, 2011, 62(2):138-146.
[8] Ayag Z, Ozdemir R G. A hybrid approach to concept selection through fuzzy analytic network process[J]. Computers & Industrial Engineering, 2009, 56(1):368-379.
[9] Chen D, Chu X, Sun X, et al. A new product service system concept evaluation approach based on information axiom in a fuzzy-stochastic environment[J]. International Journal of Computer Integrated Manufacturing, 2015, 28(11):1123-1141.
[10] 周欢,王坚强,王丹丹. 基于Hurwicz的概率不确定的灰色随机多准则决策方法[J]. 控制与决策, 2015, 30(3):556-560.Zhou H, Wang J Q, Wang D D. Grey stochastic multi-criteria decision-making approach based on Hurwicz with uncertain probability[J]. Control and Decision, 2015, 30(3):556-560.
[11] 闫书丽,刘思峰,方志耕,等. 区间灰数群决策中决策者和属性权重确定方法[J]. 系统工程理论与实践, 2014, 34(9):2372-2378.Yan S L, Liu S F, Fang Z G, et al. Method of determining weights of decision makers and attributes for group decision making with interval grey numbers[J]. Systems Engineering-Theory & Practice, 2014, 34(9):2372-2378.
[12] 杨涛,杨育,薛承梦,等. 考虑客户需求偏好的产品创新设计方案多属性决策评价[J]. 计算及集成制造系统, 2015, 21(2):417-426.Yang T, Yang Y, Xue C M, et al. Multi-attribute decision-making evaluation method for product innovation design scheme with demand preferences of customers[J]. Computer Integrated Manufacturing Systems, 2015, 21(2):417-426.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金面上项目(51475465);山东省自然科学基金(ZR2017MEE049);山东省科技重大专项资助项目(2015ZDXX0101B01)
{{custom_fund}}