基于Lévy测度的动态操作风险度量

徐驰, 汪冬华

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (9) : 2177-2187.

PDF(896 KB)
PDF(896 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (9) : 2177-2187. DOI: 10.12011/1000-6788(2018)09-2177-11
论文

基于Lévy测度的动态操作风险度量

    徐驰, 汪冬华
作者信息 +

Dynamical models of operational risk based on Lévy measure

    XU Chi, WANG Donghua
Author information +
文章历史 +

摘要

依据我国商业银行1994-2012年操作风险历史数据,本文引入Lévy测度描述操作风险损失所具有的非连续跳跃行为,利用稀疏序列法产生动态操作风险损失过程,采用了同时考虑损失频率相关性和强度相关性的Lévy Copula模型,给出了具有时变参数和时变相关性结构的动态操作风险度量模型和数值实验技术,计算了不同置信水平上的VaR与CVaR.实证结果表明:Lévy Copula模型能在减少模型设定风险的同时,较好地描述风险单元间的相关性结构;Lévy Copula模型相比于传统Copula模型对相关性结构刻画更为细致,能降低风险资本,并且通过稳健性检验;动态Lévy Copula模型能捕捉到风险的变化趋势,减少由于时变参数导致的风险资本估计偏差.

Abstract

Based on historical data of operational risk in Chinese commercial banks between 1994 and 2012, this paper introduces Lévy measure to describe discontinuous jumping behavior of operational losses, uses thinning method to simulate the dynamical process of operational risk losses and adopts Lévy Copula model considering frequency dependence and severity dependence simultaneously. In this paper, a dynamical operational risk model with time-varying parameters and time-varying correlation structure is given as well as the corresponding numerical experimental technology to calculate VaR and CVaR in different confidence levels. The empirical result shows that Lévy Copula model of which setting risk is decreased shows priority in describing the dependence structures between risk cells. In comparison with traditional Copula model, Lévy Copula model depicts dependence structure more explicitly and intensively lowering total risk capital and passes model robustness test as well. Furthermore, the dynamical Copula model displays trends of risk and reduces the estimation bias of risk capital deriving from time-varying parameters.

关键词

Lévy测度 / Lévy Copula / 共同冲击 / 动态模型

Key words

Lévy measure / Lévy Copula / common shock / dynamical model

引用本文

导出引用
徐驰 , 汪冬华. 基于Lévy测度的动态操作风险度量. 系统工程理论与实践, 2018, 38(9): 2177-2187 https://doi.org/10.12011/1000-6788(2018)09-2177-11
XU Chi , WANG Donghua. Dynamical models of operational risk based on Lévy measure. Systems Engineering - Theory & Practice, 2018, 38(9): 2177-2187 https://doi.org/10.12011/1000-6788(2018)09-2177-11
中图分类号: F832.2   

参考文献

[1] Basel Ⅱ. International convergence of capital measurement and capital standards[R]. Switzerland:Basel Committee on Banking Supervision, 2004.
[2] Frachot A, Moudoulaud O, Roncalli T. Loss distribution approach in practice[M]//The Basel Handbook:A Guide for Financial Practitioners, London:Risk Books, 2004:527-554.
[3] 周艳菊, 彭俊, 王宗润. 基于Bayesian-Copula方法的商业银行操作风险度量[J]. 中国管理科学, 2011, 19(4):17-25.Zhou Y J, Peng J, Wang Z R. Measurement of operational risk in commercial bank based on Bayesian-Copula method[J]. Chinese Journal of Management Science, 2011, 19(4):17-25.
[4] Zhou X, Durfee A V, Fabozzi F J. On stability of operational risk estimates by LDA:From causes to approaches[J]. Journal of Banking & Finance, 2016, 68:266-278.
[5] Moscadelli M. The modeling of operational risk:Experience with the analysis of the data collected by the Basel Committee[R]. Rome:Banca d'Italia, 2004.
[6] Chavez-Demoulin V, Embrechts P, Neslehova J. Quantitative models for operational risk:Extremes, dependence and aggregation[J]. Journal of Banking & Finance, 2006, 30(10):2635-2658.
[7] Chavez-Demoulin V, Embrechts P, Hofert M. An extreme value approach for modeling operational risk losses depending on covariates[J]. Journal of Risk and Insurance, 2016, 83(3):735-776.
[8] 樊欣, 杨晓光. 我国银行业操作风险的蒙特卡罗模拟估计[J]. 系统工程理论与实践, 2005, 25(5):12-19.Fan X, Yang X G. Estimating operational risk of China's commercial bank sector via Monte Carlo simulation[J]. Systems Engineering-Theory & Practice, 2005, 25(5):12-19.
[9] Li J, Feng J, Chen J. A piecewise-defined severity distribution-based loss distribution approach to estimate operational risk:Evidence from Chinese national commercial banks[J]. International Journal of Information Technology & Decision Making, 2009, 8(4):727-747.
[10] Wang Z, Wang W, Chen X, et al. Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks[J]. Economic Modelling, 2012, 29(6):2095-2103.
[11] 王宗润, 汪武超, 陈晓红,等. 基于BS抽样与分段定义损失强度操作风险度量[J]. 管理科学学报, 2012, 15(12):58-69.Wang Z R, Wang W C, Chen X H, et al. Application of LDA based on bootstrap sampling and piecewise-defined severity distribution in operational risk measurement[J]. Journal of Management Sciences in China, 2012, 15(12):58-69.
[12] Han J, Wang W, Wang J. POT model for operational risk:Experience with the analysis of the data collected from Chinese commercial banks[J]. China Economic Review, 2015, 36(11):325-340.
[13] 司马则茜,蔡晨,李建平. 基于g-h分布度量银行操作风险[J]. 系统工程理论与实践, 2011, 31(12):2321-2327.Sima Z Q, Cai C, Li J P. Bank operational risk measurement based on g-h distribution[J]. Systems Engineering-Theory & Practice, 2011, 31(12):2321-2327.
[14] 汪冬华, 徐驰. 基于非参数方法的银行操作风险度量[J]. 管理科学学报, 2015, 18(3):104-113.Wang D H, Xu C. Operational risk measures for banks based on nonparametric methods[J]. Journal of Management Sciences in China, 2015, 18(3):104-113.
[15] 莫建明, 周宗放, 贺炎林. 重尾性操作风险度量模型与管理模型的连接参数[J]. 系统工程理论与实践, 2011, 31(6):1021-1028.Mo J M, Zhou Z F, He Y L. Connection parameters of heavy-tailed operational risk measurement model with management model[J]. Systems Engineering-Theory & Practice, 2011, 31(6):1021-1028.
[16] 张明善, 唐小我, 莫建明. Weibull分布下操作风险监管资本及度量精度灵敏度[J]. 系统工程理论与实践, 2014, 34(8):1932-1943.Zhang M S, Tang X W, Mo J M. Sensitivity of operational risk's regulatory capital and measurement accuracy in the Weibull distribution[J]. Systems Engineering-Theory & Practice, 2014, 34(8):1932-1943.
[17] Allen L, Bali T G. Cyclicality in catastrophic and operational risk measurements[J]. Journal of Banking & Finance, 2007, 31(4):1191-1235.
[18] Sklar M. Fonctions de répartition á n dimensions et leurs marges[J]. Publications de l'Institut de Statistique de L'Université de Paris, 1959, 8:229-231.
[19] Sklar A. Random variables, joint distribution functions, and copulas[J]. Kybernetika, 1973, 9(6):449-460.
[20] Joe H. Multivariate models and multivariate dependence concepts[M]. London:Chapman & Hall, 1997.
[21] Embrechts P, Höing A, Juri A. Using copulae to bound the value-at-risk for functions of dependent risks[J]. Finance and Stochastics, 2003, 7(2):145-167.
[22] Embrechts P, Puccetti G. Bounds for functions of dependent risks[J]. Finance and Stochastics, 2006, 10(3):341-352.
[23] Di Clemente A, Romano C. A copula-extreme value theory approach for modelling operational risk[M]//Operational Risk Modelling and Analysis, London:Risk Books, 2004:189-208.
[24] Abbate D, Gourier E, Farkas W. Operational risk quantification using extreme value theory and copulas:From theory to practice[J]. Journal of Operational Risk, 2009, 4(3):1-24.
[25] 李建平,丰吉闯,宋浩,等. 风险相关性下的信用风险、市场风险和操作风险集成度量[J]. 中国管理科学, 2010, 18(1):18-25.Li J P, Feng J C, Song H, et al. Integrating credit, market and operational risk based on risk correlation[J]. Chinese Journal of Management Science, 2010, 18(1):18-25.
[26] Rosenberg J V, Schuermann T. A general approach to integrated risk management with skewed, fat-tailed risks[J]. Journal of Financial Economics, 2006, 79(3):569-614.
[27] Kole E, Koedijk K, Verbeek M. Selecting copulas for risk management[J]. Journal of Banking & Finance, 2007, 31(8):2405-2423.
[28] 陆静, 张佳. 基于极值理论和多元Copula函数的商业银行操作风险计量研究[J]. 中国管理科学, 2013, 21(3):11-19.Lu J, Zhang J. Measurements of commercial bank's operational risk based on extreme value theory and multivariate Copula functions[J]. Chinese Journal of Management Science, 2013, 21(3):11-19.
[29] 汪冬华, 黄康, 龚朴. 我国商业银行整体风险度量及其敏感性分析——基于我国商业银行财务数据和金融市场公开数据[J]. 系统工程理论与实践, 2013, 33(2):284-295.Wang D H, Huang K, Gong P. Integrated risk measurement of Chinese commercial banks and its sensitivity-Based on the financial data of Chinese commercial banks and the open data of the financial market[J]. Systems Engineering-Theory & Practice, 2013, 33(2):284-295.
[30] Guegan D, Hassani B K. Multivariate VaRs for operational risk capital computation:A vine structure approach[J]. International Journal of Risk Assessment and Management, 2013, 17(2):148-170.
[31] Brechmann E, Czado C, Paterlini S. Flexible dependence modeling of operational risk losses and its impact on total capital requirements[J]. Journal of Banking & Finance, 2014, 40:271-285.
[32] Grothe O, Hofert M. Construction and sampling of Archimedean and nested Archimedean Lévy copulas[J]. Journal of Multivariate Analysis, 2015, 138:182-198.
[33] Avanzi B, Tao J, Wong B, et al. Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas[J]. Annals of Actuarial Science, 2016, 10(1):87-117.
[34] Chernobai A, Yildirim Y. The dynamics of operational loss clustering[J]. Journal of Banking & Finance, 2008, 32(12):2655-2666.
[35] Mittnik S, Starobinskaya I. Modeling dependencies in operational risk with hybrid Bayesian networks[J]. Methodology & Computing in Applied Probability, 2010, 12(3):379-390.
[36] Neil M, Lasse D, Andersen B, et al. Modelling operational risk in financial institutions using hybrid dynamic Bayesian networks[J]. Journal of Operational Risk, 2009, 4(1):3-33.
[37] Li J, Zhu X, Xie Y, et al. The mutual-information-based variance-covariance approach:An application to operational risk aggregation in Chinese banking[J]. Journal of Operational Risk, 2014, 9(3):3-19.
[38] Böcker K, Klüppelberg C. Modelling and measuring multivariate operational risk with Lévy copulas[J]. Operational Risk, 2008, 3(2):3-27.
[39] Cont R, Tankov P. Financial modelling with jump processes[M]. Boca Raton:Chapman & Hall/CRC, 2004.
[40] Esmaeili H, Klüppelberg C. Parameter estimation of a bivariate compound Poisson process[J]. Insurance:Mathematics and Economics, 2010, 47(2):224-233.
[41] Daley D J, Vere-Jones D. An introduction to the theory of point processes:Volume I:Elementary theory and methods[M]. New York:Springer Science & Business Media, 2003.
[42] Embrechts P, Klüppelberg C, Mikosch T. Modelling extremal events for insurance and finance[M]. New York:Springer, 1997.
[43] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. The Journal of Derivatives, 1995, 3(2):73-84.

基金

国家自然科学基金(71171083,71771087);上海市教育委员会科研创新项目(14ZS058);上海市浦江人才计划(15PJC021)

PDF(896 KB)

481

Accesses

0

Citation

Detail

段落导航
相关文章

/