基于个人区间复合标度的一致决策模型

黄海燕, 刘晓明

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (8) : 2079-2087.

PDF(606 KB)
PDF(606 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (8) : 2079-2087. DOI: 10.12011/1000-6788(2018)08-2079-09
论文

基于个人区间复合标度的一致决策模型

    黄海燕, 刘晓明
作者信息 +

A consensus decision making model with personalized interval composite scales

    HUANG Haiyan, LIU Xiaoming
Author information +
文章历史 +

摘要

为更好地解决一致决策过程中不同决策者的偏好信息表示,以及一致程度判定等问题,提出一种基于区间复合标度的二元语义模型,可实现从词到数值区间的转化过程以及数值区间到词的再转化过程.提出一种基于个人区间复合标度的一致决策模型,决策者个人有不同的语言表示模型,同时突出决策过程中的转化和再转化过程,可对整个决策过程的一致状态进行判断.提出的模型考虑了人们思维的模糊性以及认知的差异性,并为解决复杂的一致决策问题提供了量化模型与评价依据.

Abstract

Considering that different people are different in their linguistic preference and in order to determine the consensus state for supporting consensus decision making, this paper first proposes an interval composite scale based 2-tuple linguistic model, which realizes the process of translation from word to interval numerical and the process of retranslation from interval numerical to word. A consensus decision making model with personalized interval composite scales is proposed, which can provide different linguistic representation models for different decision-makers. This model includes a semantic translation and retranslation phase during decision process and determines the consensus state of the whole decision process. These models proposed take into full consideration that human language contains fuzziness and usually real-world preferences are uncertain, and provide efficient computation models to support consensus decision making.

关键词

一致决策 / 个人区间复合标度 / 二元语义 / 模糊性

Key words

consensus decision making / personalized interval composite scale / linguistic 2-tuple / fuzziness

引用本文

导出引用
黄海燕 , 刘晓明. 基于个人区间复合标度的一致决策模型. 系统工程理论与实践, 2018, 38(8): 2079-2087 https://doi.org/10.12011/1000-6788(2018)08-2079-09
HUANG Haiyan , LIU Xiaoming. A consensus decision making model with personalized interval composite scales. Systems Engineering - Theory & Practice, 2018, 38(8): 2079-2087 https://doi.org/10.12011/1000-6788(2018)08-2079-09
中图分类号: C934   

参考文献

[1] Li C C, Dong Y C, Herrera F, et al. Personalized individual semantics in computing with words for supporting linguistic group decision making. An application on consensus reaching[J]. Information Fusion, 2017, 33(1):29-40.
[2] Mendel J M, Wu D. Perceptual computing:Aiding people in making subjective judgments[M]. Hoboken, New Jersey:IEEE-Wiley Press, John Wiley & Sons, Inc., 2010.
[3] 彭勃, 叶春明. 区间直觉纯语言信息的集结方法及其在群决策中的应用[J]. 系统工程理论与实践, 2016, 36(6):1526-1535.Peng B, Ye C M. Methods for aggregating interval-valued intuitionistic pure linguistic information and their application to group decision making[J]. Systems Engineering-Theory & Practice, 2016, 36(6):1526-1535.
[4] 武彤, 刘新旺, 桑秀芝. 基于区间二型模糊集的模糊等价关系聚类分析[J]. 系统工程理论与实践, 2016, 36(5):1297-1305.Wu T, Liu X W, Sang X Z. Clustering analysis of fuzzy equivalence based on interval type-2 fuzzy sets[J]. Systems Engineering-Theory & Practice, 2016, 36(5):1297-1305.
[5] Espinilla M, Liu J, Martínez L. An extended hierarchical linguistic model for decision-making problems[J]. Computational Intelligence, 2011, 27(3):489-512.
[6] Herrera F, Martínez L. A model based on linguistic 2-tuples for dealing with multi-granular hierarchical linguistic context in multi-expert decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2001, 31(2):227-234.
[7] Morente-Molinera J A, Pérez I J, Urena M R, et al. On multi-granular fuzzy linguistic modelling in group decision making problems:A systematic review and future trends[J]. Knowledge-Based Systems, 2015, 74:49-60.
[8] Abchir M A, Truck I. Towards an extension of the 2-tuple linguistic model to deal with unbalanced linguistic term sets[J]. Kybernetika, 2013, 49(1):164-180.
[9] 吴良刚, 文丽. 考虑认知态度的区间二元语义补偿算子及应用[J]. 模糊系统与数学, 2016, 30(3):74-84.Wu L G, Wen L. Interval-valued 2-tuple linguistic compensative operator considering cognitive attitude and its application[J]. Fuzzy Systems and Mathematics, 2016, 30(3):74-84.
[10] Yager R R. On the retranslation process in Zadeh's paradigm of computing with words[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(2):1184-1195.
[11] 鲍广宇, 黄海燕. 敏捷指挥控制一致决策度量技术研究[J]. 军事运筹与系统工程, 2015, 29(2):22-27.
[12] Merigó J M, Casanovas M, Martínez L. Linguistic aggregation operators for linguistic decision making based on the Dempster-Shafer theory of evidence[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2010, 18(3):287-304.
[13] Dong Y C, Zhang G Q, Hong W C, et al. Linguistic computational model based on 2-tuples and intervals[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(6):1006-1018.
[14] Dong Y C, Herrera-Viedma E. Consistency-driven automatic methodology to set interval numerical scales of 2-tuple linguistic term sets and its use in the linguistic GDM with preference relation[J]. IEEE Transactions on Cybernetics, 2015, 45(4):780-792.

基金

国家自然科学基金(61174198)
PDF(606 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/