多层次复杂系统的资源优化配置方法

马占新, 曹莉, 包斯琴高娃

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (7) : 1802-1818.

PDF(1036 KB)
PDF(1036 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (7) : 1802-1818. DOI: 10.12011/1000-6788(2018)07-1802-17
论文

多层次复杂系统的资源优化配置方法

    马占新1, 曹莉2,3, 包斯琴高娃4
作者信息 +

A resource optimized allocation method of multi-level complex system

    MA Zhanxin1, CAO Li2,3, BAO Siqin'gaowa4
Author information +
文章历史 +

摘要

数据包络分析(data envelopment analysis,DEA)是一种重要的效率评价方法,特别适合复杂系统的评价问题.但由于复杂系统指标体系的复杂性使得DEA方法在评价复杂系统效率问题时也遇到了一些无法回避的困难,主要表现在评价结果过于强调次要指标的作用、常常出现多数单元有效、对投影的要求过于苛刻、指标集成后无法找到针对原始指标的改进信息等.为了解决上述问题,给出了一种用于复杂系统评价的数据包络分析模型,并对相应的DEA有效性含义、模型性质以及模型的求解方法等进行了探讨.通过实例比较可以看出,本文方法不仅具有传统DEA方法的优点,而且还很好地克服了上述缺点.

Abstract

Data envelopment analysis (DEA) is an important efficiency evaluation method, and it is especially suitable for analyzing the complex systems. However, DEA method also has some disadvantages that cannot be overcome in practical application because of the complexity of index system. It mainly shows in the following aspects. Firstly, the evaluation result may excessively emphasize the secondary index function. Secondly, it often appears that most units are effective. Thirdly, the requirement to projection is too high. Fourthly, It can't find the improvement information for the original indexes. In order to solve above problem, a data envelopment analysis model for evaluating complex systems is given. The meaning of DEA efficiency, properties and solving method of this model are also discussed. By the comparison of examples, it can be found that the above model not only has the advantages of the traditional DEA method, but also overcomes the shortcomings of the traditional method.

关键词

综合评价 / 多目标决策 / 数据包络分析 / 样本单元 / 指标集成

Key words

comprehensive evaluation / multi-objective decision-making / data envelopment analysis / sample unit / integration of index

引用本文

导出引用
马占新 , 曹莉 , 包斯琴高娃. 多层次复杂系统的资源优化配置方法. 系统工程理论与实践, 2018, 38(7): 1802-1818 https://doi.org/10.12011/1000-6788(2018)07-1802-17
MA Zhanxin , CAO Li , BAO Siqin'gaowa. A resource optimized allocation method of multi-level complex system. Systems Engineering - Theory & Practice, 2018, 38(7): 1802-1818 https://doi.org/10.12011/1000-6788(2018)07-1802-17
中图分类号: N94   

参考文献

[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 6(2):429-444.
[2] Wei Q L, Yu G, Lu S J. The necessary and sufficient conditions for returns to scale properties in generalized data envelopment analysis models[J]. Science in China (Series E), 2002, 45(5):503-517.
[3] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management Science, 1984, 30(9):1078-1092.
[4] Fare R, Grosskopf S. A nonparametric cost approach to scale efficiency[J]. Scandinavian Journal of Economics, 1985, 87(4):594-604.
[5] Seiford L M, Thrall R M. Recent development in DEA. The mathematical programming approach to frontier analysis[J]. Journal of Economics, 1990, 46(1-2):7-38.
[6] Asmilda M, Paradib J C, Pastorc J T. Centralized resource allocation BCC models[J]. International Journal of Management Science, 2006:1-10.
[7] Lozano S, Villa G. Centralized resource allocation using data envelopment analysis[J]. Journal of Productivity Analysis, 2004, 22:143-161.
[8] Liang L, Yang F, Cook W D, et al. DEA models for supply chain efficiency evaluation[J]. Annals of Operations Research, 2006, 145:35-49.
[9] 马占新, 任慧龙. 一种基于样本的综合评价方法及其在FSA中的应用研究[J]. 系统工程理论与实践, 2003, 23(2):95-101. Ma Z X, Ren H L. An evaluation method based on some sample units and its applying on FSA[J]. Systems Engineering-Theory & Practice, 2003, 23(2):95-101.
[10] 马占新. 样本数据包络面的研究与应用[J]. 系统工程理论与实践, 2003, 23(12):32-37. Ma Z X.Frontier that formed by some sample units and its applying[J].Systems Engineering-Theory & Practice, 2003, 23(12):32-37.
[11] Ma Z X, Zhang H J, Cui X H. Study on the combination efficiency of industrial enterprises[C]//Proceedings of International Conference on Management of Technology, Australia:Aussino Academic Publishing House, 2007:225-230.
[12] 马占新, 郑雪琳, 安建业, 等. 一种含有中性指标的数据包络分析方法[J]. 系统工程理论与实践, 2017, 37(2):418-430. Ma Z X, Zheng X L, An J Y, et al. Data envelopment analysis method with some neutral indexes[J].Systems Engineering-Theory & Practice, 2017, 37(2):418-430.
[13] 马生昀, 马占新. 基于C2W模型的广义数据包络分析方法[J].系统工程理论与实践, 2014, 34(4):899-909. Ma S Y, Ma Z X. Generalized data envelopment analysis method based on C2W model[J]. Systems Engineering-Theory & Practice, 2014, 34(4):899-909.
[14] 马占新. 数据包络分析方法的研究进展[J]. 系统工程与电子技术, 2002, 24(3):42-46. Ma Z X. Research on the data envelopment analysis method[J]. Systems Engineering and Electronics, 2002, 24(3):42-46.
[15] Cooper W W, Seiford L M, Zhu J. Handbook on data envelopment analysis[M]. Boston:Kluwer Academic Publishers, 2004.
[16] Cooper W W, Seiford L M, Thanassoulis E, et al. DEA and its uses in different countries[J]. European Journal of Operational Research, 2004, 154(2):337-344.
[17] Yang T, Kuo C. A hierarchical AHP/DEA methodology for the facilities layout design problem[J]. European Journal of Operational Research, 2003, 147(1):128-136.
[18] Ramanathan R. Supplier selection problem:Integrating DEA with the approaches of total cost of ownership and AHP[J]. Supply Chain Management, 2007, 12(4):258-261.
[19] Lin M, Lee Y, Ho T. Applying integrated DEA/AHP to evaluate the economic performance of local governments in China[J]. European Journal of Operational Research, 2011, 209(2):129-140.
[20] Raut R D. Environmental performance:A hybrid method for supplier selection using AHP/DEA[J]. International Journal of Business Insights & Transformation, 2011, 5(1):16-29.
[21] Chen T Y. Measuring firm performance with DEA and prior information in Taiwan's banks[J]. Applied Economics Letters, 2002, 9(3):201-204.
[22] Jablonsky J. Measuring the efficiency of production units by AHP models[J]. Mathematical & Computer Modelling, 2007, 46(7-8):1091-1098.
[23] Ho C B, Oh K B. Selecting internet company stocks using a combined DEA and AHP approach[J]. International Journal of Systems Science, 2010, 41(3):325-336.
[24] Villa G. Multi-objective target setting in data envelopment analysis using AHP[J]. Computers & Operations Research, 2009, 36(2):549-564.
[25] Shang J, Sueyoshi T. Theory and methodology-A unified framework for the selection of a flexible manufacturing system[J]. European Journal of Operational Research, 1995, 85(2):297-315.
[26] Premachandra I M. Controlling factor weights in data envelopment analysis by incorporating decision maker's value judgement:An approach based on AHP[J]. International Journal of Information & Management Sciences, 2001, 12(2):67-82.
[27] Takamura Y, Tone K. A comparative site evaluation study for relocating Japanese government agencies out of Tokyo[J]. Socio-Economic Planning Sciences, 2003, 37(2):85-102.
[28] Kong W H, Fu T T. Assessing the performance of business colleges in Taiwan using data envelopment analysis and student based value-added performance indicators[J]. Omega, 2012, 40(5):541-549.
[29] Feng Y J, Lu H, Bi K. An AHP/DEA method for measurement of the efficiency of R&D management activities in universities[J]. International Transactions in Operational Research, 2010, 11(2):181-191.
[30] Saen R F, Memariani A, Lotfi F H. Determining relative efficiency of slightly non-homogeneous decision making units by data envelopment analysis:A case study in IROST[J]. Applied Mathematics & Computation, 2005, 165(2):313-328.
[31] Liu C C, Chen C Y. Incorporating value judgments into data envelopment analysis to improve decision quality for organization[J]. Journal of American Academy of Business, Cambridge, 2004, 5(1/2):423-427.
[32] 马占新. 关于若干DEA模型与方法研究[D].大连:大连理工大学, 1999.Ma Z X.Study on several DEA models and the methods[D].Dalian:Dalian University of Technology, 1999.
[33] 马占新. 广义参考集DEA模型及其相关性质[J].系统工程与电子技术, 2012, 34(4):709-714. Ma Z X.DEA model with generalized reference set and its properties[J].Systems Engineering and Electronics, 2012, 34(4):709-714.
[34] 马占新. 数据包络分析(第二卷):广义数据包络分析方法[M].北京:科学出版社, 2012. Ma Z X.Generalized data envelopment analysis[M].Beijing:Science Press, 2012.
[35] 王宗军, 冯珊. 我国计划单列城市整体发展水平的多目标多层次模糊综合评价研究[J].系统工程与电子技术, 1993, 15(8):29-40.Wang Z J, Feng S. Study on the multiobjective multilayer fuzzy comprehensive evaluation of the whole development level of Chinese independent plan cities[J]. Systems Engineering and Electronics, 1993, 15(8):29-40.
[36] 邓志刚, 汪星明, 李宝山, 等. 社会经济系统工程[M].北京:中国人民大学出版社, 1994.Deng Z G, Wang X M, Li B S, et al. Socio-economic systems engineering[M]. Beijing:Press of Renmin University of China, 1994.

基金

国家自然科学基金(71661025,71261017);内蒙古自然科学基金(2016MS0705);内蒙古草原英才项目(12000-12102012);内蒙古医科大学青年创新基金(YKD2015QNCX007)
PDF(1036 KB)

418

Accesses

0

Citation

Detail

段落导航
相关文章

/