中图分类号:
F832
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bollerslev T. Modelling the coherence in short-run nominal exchange rates:A multivariate generalized ARCH model[J]. Review of Economics & Statistics, 1990, 72(3):498-505.
[2] Bauwens L, Rombouts J V K. Multivariate GARCH models:A survey[J]. Journal of Applied Econometrics, 2006, 21(1):79-109.
[3] Asai M, McAleer M, Yu J. Multivariate stochastic volatility:A review[J]. Econometric Reviews, 2006, 25(2-3):145-175.
[4] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2):579-625.
[5] Andersen T G, Terasvirta T. Realized volatility[M]//Handbook of Financial Time Series, 2009, 71(2):555-575.
[6] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al. Multivariate realised kernels:Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading[J]. Journal of Econometrics, 2011, 162(2):149-169.
[7] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2):174-196.
[8] Bauer G H, Vorkink K. Forecasting multivariate realized stock market volatility[J]. Journal of Econometrics, 2011, 160(1):93-101.
[9] Chiriac R, Voev V. Modelling and forecasting multivariate realized volatility[J]. Journal of Applied Econometrics, 2011, 26(6):922-947.
[10] Gribisch B. A latent dynamic factor approach to forecasting multivariate stock market volatility[J]. Empirical Economics, 2013:1-31.
[11] Cech F, Barunik J. On the modelling and forecasting of multivariate realized volatility:Generalized heterogeneous autoregressive (GHAR) model[J]. Journal of Forecasting, 2016, 36(2):181-206.
[12] 陈浪南, 杨科. 中国股市高频波动率的特征、预测模型以及预测精度比较[J]. 系统工程理论与实践, 2013, 33(2):296-307. Chen L N, Yang K. High-frequency volatility features, forecast model and performance evaluation[J]. Systems Engineering-Theory & Practice, 2013, 33(2):296-307.
[13] 杨继平, 冯毅俊, 王辉. 基于结构转换PTTGARCH模型沪深股市波动率的估计[J]. 系统工程理论与实践, 2016, 36(9):2205-2215. Yang J P, Feng Y J, Wang H. Estimation of volatility of CSI 300 index based on regime switching PTTGARCH model[J]. Systems Engineering-Theory & Practice, 2016, 36(9):2205-2215.
[14] 施雅丰, 艾春荣. 中国股市波动率的广义周内特征及其预测模型[J]. 系统工程理论与实践, 2016, 36(8):1918-1927. Shi Y F, Ai C R. A volatility model for Chinese stock market with generalized day-of-the-week effect[J]. Systems Engineering-Theory & Practice, 2016, 36(8):1918-1927.
[15] 赵树然, 姜亚萍, 任培民. 高频波动率矩阵估计的比较分析——基于有噪非同步的金融数据[J]. 中国管理科学, 2015, 23(10):19-29.Zhao S R, Jiang Y P, Ren P M. Comparing estimators of the high-frequency volatility matrix in the presence of non-synchronous trading and market microstructure noise[J]. Chinese Journal of Management and Science, 2015, 23(10):19-29.
[16] 刘丽萍. 多维金融高频协方差阵预测模型的比较分析[J]. 数学的实践与认识, 2014(12):203-214.Liu L P. The comparative analysis of multidimensional financial high frequency covariance matrix's prediction model[J]. Mathematics in Practice and Theory, 2014(12):203-214.
[17] 赵树然, 张燕燕, 任培民. 异质金融市场高频期货交叉套期保值问题研究[J]. 系统工程理论与实践, 2016, 36(9):2189-2204.Zhao S R, Zhang Y Y, Ren P M. Study on high-frequency futures cross-hedging problem driven by heterogeneous financial market[J]. Systems Engineering-Theory & Practice, 2016, 36(9):2189-2204.
[18] Kalli M, Griffin J E. Time-varying sparsity in dynamic regression models[J]. Journal of Econometrics, 2011, 178(2):779-793.
[19] Engle R. Dynamic conditional correlation:A simple class of multivariate generalized autoregressive conditional heteroskedasticity models[J]. Journal of Business & Economic Statistics, 2002, 20(3):339-350.
[20] Longertaey J, Spencer M. RiskMetricsTM-Technical document[J]. New York:Morgan Guaranty Trust Company of New York, 1996.
[21] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1):77-91.
[22] Barndorff-Nielsen O E, Shephard N. Estimating quadratic variation using realized variance[J]. Journal of Applied econometrics, 2002, 17(5):457-477.
[23] Bessembinder H, Seguin P J. Price volatility, trading volume, and market depth:Evidence from futures markets[J]. The Journal of Financial and Quantitative Analysis, 1993, 28(1):21-39.
[24] Lucia J J, Pardo A. On measuring speculative and hedging activities in futures markets from volume and open interest data[J]. Applied Economics, 2010, 42(12):1549-1557.
[25] Pitt M K, Chatfield C, Walker S G. Constructing first order stationary autoregressive models via latent processes[J]. Scandinavian Journal of Statistics, 2002, 29(4):657-663.
[26] Pitt M K, Walker S G. Constructing stationary time series models using auxiliary variables with applications[J]. Journal of the American Statistical Association, 2005, 100(470):554-564.
[27] Gourieroux C, Jasiak J. Autoregressive gamma processes[J]. Journal of Forecasting, 2006, 25(2):129-152.
[28] Frühwirth-Schnatter S. Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering[J]. Statistics and Computing, 1994, 4(4):259-269.
[29] Carter C K, Kohn R. On Gibbs sampling for state space models[J]. Biometrika, 1994, 81(3):541-553.
[30] Griffin J E, Brown P J. Inference with normal-gamma prior distributions in regression problems[J]. Bayesian Analysis, 2010, 5(1):171-188.
[31] Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2):453-497.
[32] Memmel C, Kempf A. Estimating the global minimum variance portfolio[J]. Social Science Electronic Publishing, 2006, 58(4):332-348.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
教育部人文社会科学研究青年基金(17YJC630099);教育部人文社会科学研究规划基金(17YJA790011);广东省自然科学基金(2017A030310391,2017A030311038)
{{custom_fund}}