基于瓶颈模型的异质出行者早高峰出行问题研究

郭晓, 孙会君

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (4) : 1003-1012.

PDF(902 KB)
PDF(902 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (4) : 1003-1012. DOI: 10.12011/1000-6788(2018)04-1003-10
论文

基于瓶颈模型的异质出行者早高峰出行问题研究

    郭晓, 孙会君
作者信息 +

Modeling the morning commute problem with heterogeneous travelers based on bottleneck model

    GUO Xiao, SUN Huijun
Author information +
文章历史 +

摘要

早高峰出行中道路瓶颈是造成交通拥堵的主要原因之一.本文针对存在高速公路(含有高承载力车道)和普通道路的瓶颈路段,研究了时间价值不同的出行者早高峰出行行为.基于瓶颈模型的均衡条件,推导了不同收费标准下,出行者改变出行方式时个人早到惩罚的临界值.研究发现收费较低时,时间价值较低的出行者使用高承载力车辆的数量会增加.收费达到一定程度时,即使是时间价值较高的出行者也会选择高承载力车辆出行.数值算例也表明设置恰当的收费标准可以降低系统出行时间.

Abstract

Road bottleneck in the morning commute is one of the main reasons of traffic congestion. This paper studies travel behavior of travelers with different value of time (VOT) in morning rush hours, when there exist bottlenecks on highway (including high occupancy vehicle lanes) and ordinary road. Based on the equilibrium condition of the bottleneck model, the critical value of the individual early schedule delay is deduced when the travelers choose the travel mode under different toll levels. In the situation of lower toll level, the number of travelers with low VOT will increase. When the toll reaches a certain level, even the high VOT travelers will change the travel mode with the high occupancy vehicle. Numerical examples are presented to verify the results, and indicate that setting the appropriate toll can reduce the system total travel time.

关键词

公路运输 / 拥堵收费 / 瓶颈模型 / 高承载力车道

Key words

highway transportation / congestion pricing / bottleneck model / high occupancy vehicle lanes

引用本文

导出引用
郭晓 , 孙会君. 基于瓶颈模型的异质出行者早高峰出行问题研究. 系统工程理论与实践, 2018, 38(4): 1003-1012 https://doi.org/10.12011/1000-6788(2018)04-1003-10
GUO Xiao , SUN Huijun. Modeling the morning commute problem with heterogeneous travelers based on bottleneck model. Systems Engineering - Theory & Practice, 2018, 38(4): 1003-1012 https://doi.org/10.12011/1000-6788(2018)04-1003-10
中图分类号: U268.6   

参考文献

[1] Vickrey W S. Congestion theory and transport investment[J]. American Economic Review, 1969, 59(2):251-260.
[2] 卢晓珊, 黄海军, 刘天亮,等.考虑早晚高峰出行链的出行方式选择均衡与定价机制[J]. 系统工程理论与实践, 2013, 33(1):167-174. Lu X S, Huang H J, Liu T L, et al. Mode choice equilibrium and pricing mechanisms considering peak trip chain[J]. Systems Engineering-Theory & Practice, 2013, 33(1):167-174.
[3] 张邻, 杜文, 夏璇, 等.实行区域拥挤费征收的交通系统与居住地选择之间的关系[J]. 系统工程理论与实践, 2014, 34(2):509-520. Zhang L, Du W, Xia X, et al. Relationship between residential choice and transport system of area-road congestion charging scheme[J]. Systems Engineering-Theory & Practice, 2014, 34(2):509-520.
[4] Henderson J. Economic theory and cities[M]. New York:Academic Press, 1977.
[5] Mahmassani H, Herman R. Dynamic user equilibrium departure time and route choice on idealized traffic arterials[J]. Transportation Science, 1984, 18(4):362-384.
[6] Tabuchi T. Bottleneck congestion and modal split[J]. Journal of Urban Economics, 1993, 36(2):267-284.
[7] Huang H J. Pricing and logit-based mode choice models of a transit and highway system with elastic demand[J]. European Journal of Operational Research, 2002, 140(3):562-570.
[8] Huang H J, Tian Q, Yang H, et al. Modal split and commuting pattern on a bottleneck-constrained highway[J]. Transportation Research Part E, 2007, 43(5):578-590.
[9] Gonzales E J, Daganzo C F. Morning commute with competing modes and distributed demand:User equilibrium, system optimum, and pricing[J]. Transportation Research Part B, 2012, 46(10):1519-1534.
[10] Qian Z, Zhang H M. Modeling multi-modal morning commute in a one-to-one corridor network[J]. Transportation Research Part C, 2011, 19(2):254-269.
[11] Van Z N, Koolstra K. Multiclass continuous-time equilibrium model for departure time choice on single-bottleneck network[J]. Transportation Research Board, 2002, 1783:134-141.
[12] Ramadurai G, Ukkusuri S, Zhao J, et al. Linear complementary formulation for the multi-user class single bottleneck problem[J]. Transportation Research Part B, 2010, 44(2):193-214.
[13] Lindsey R. Existence, uniqueness, and trip cost function properties of user equilibrium in the bottleneck model with multiple user class[J]. Transportation Science, 2004, 38(3):293-314.
[14] Newell G F. The morning commute for nonidentical travelers[J]. Transportation Science, 1987, 21(2):74-88.
[15] Xiao F, Qian Z, Zhang H M. The morning commute problem with coarse toll and nonidentical commuters[J]. Networks Spatial Economics, 2011, 11(2):343-369.
[16] Van B V, Verhoef E T. Winning or losing from dynamic bottleneck congestion pricing? The distributional effects of road pricing with heterogeneity in values of time and schedule delay[J]. Journal of Public Economics, 2011, 95(7-8):983-992.
[17] Van B V, Verhoef E T. Congestion tolling in the bottleneck model with heterogeneous values of time[J]. Transportation Research Part B, 2011, 45(1):60-78.
[18] Xiao F, Zhang H M. Pareto-improving and self-sustainable pricing for the morning commute with nonidentical commuters[J]. Transportation Science, 2014, 48(2):159-169.
[19] 胡文君, 周溪召.基于成对组合Logit的多用户多模式随机用户均衡模型[J]. 系统工程理论与实践, 2013, 33(5):1318-1326. Hu W J, Zhou X Z. Multi-user multi-mode stochastic user equilibrium model based on paired combinatorial logit models[J]. Systems Engineering-Theory & Practice, 2013, 33(5):1318-1326.
[20] Smith M. The marginal cost taxation of a transportation network[J]. Transportation Research Part B, 1979, 13(3):237-242.
[21] Yang H, Huang H J. Mathematical and economic theory of road pricing[M]. Amsterdam:Elsevier Press, 2005.
[22] Nagurney A. Network economics:A variational inequality approach[M]. Netherlands:Kluwer Academic Publishers, 1999.
[23] Yang H, Huang H J. The multi-class, multi-criteria traffic network equilibrium and system optimum problem[J]. Transportation Research Part B, 2004, 38(1):1-15.
[24] Yang H, Guo X L. Pareto-improving congestion pricing and revenue refunding with multiple user classes[J]. Transportation Research Part B, 2010, 44(8):972-982.
[25] Liu Y, Guo X L, Yang H. Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks[J]. Netnomics, 2009, 10(1):123-140.
[26] Konishi H, Mun S. Carpooling and congestion pricing:HOV and HOT lanes[J]. Regional Science and Urban Economics, 2010, 40(4):173-186.
[27] Kwon J, Varaiya P. Effectiveness of California's high occupancy vehicle (HOV) system[J]. Transportation Research Part C, 2008, 16(1):98-115.
[28] Daganzo C F, Cassidy M J. Effects of high occupancy vehicle lanes on freeway congestion[J]. Transportation Research Part B, 2008, 42(10):861-872.
[29] Cassidy M J, Jang K, Daganzo C F. The smoothing effect of carpool lanes on freeway bottlenecks[J]. Transportation Research Part A, 2010, 44(2):65-75.
[30] Cassidy M J, Kwangho K, Wei N, et al. A problem of limited-access special lanes. Part I:Spatiotemporal studies of real freeway traffic[J]. Transportation Research Part A, 2015, 80:307-319.
[31] Cassidy M J, Kwangho K, Wei N, et al. A problem of limited-access special lanes. Part Ⅱ:Exploring remedies via simulation[J]. Transportation Research Part A, 2015, 80:320-329.

基金

国家自然科学基金(71771018,71621001)
PDF(902 KB)

603

Accesses

0

Citation

Detail

段落导航
相关文章

/