区间粗糙数层次分析法

吕跃进, 杨燕华

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (3) : 786-793.

PDF(589 KB)
PDF(589 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (3) : 786-793. DOI: 10.12011/1000-6788(2018)03-0786-08
论文

区间粗糙数层次分析法

    吕跃进1, 杨燕华2
作者信息 +

Analytic hierarchy process based on interval rough number

    LÜ Yuejin1, YANG Yanhua2
Author information +
文章历史 +

摘要

针对基于点判断矩阵、区间判断矩阵的层次分析法存在信息缺失及没有考虑决策者风险偏好的不足,定义并构造了区间粗糙数判断矩阵,由此将区间粗糙数引入层次分析法中,并提出相应的排序方法,得到仍然是区间粗糙数形式的排序权重向量,这不仅可以保留决策者更多的判断信息,而且还可以反映决策者的风险偏好.将粗糙集的客观性和层次分析法的主观性有机地结合起来,形成区间粗糙数层次分析法.最后通过算例说明所提方法的可行性.

Abstract

The deficiencies of analytic hierarchy process based on point judgment matrix and interval judgment matrix are lacking of information and regardless of the decision-maker's risk preference. Against these deficiencies, this paper defines and constructs judgment matrix based on interval rough number. From this, interval rough number is introduced into analytic hierarchy process. Then a new ranking method is proposed and the priority vector in form of interval rough number is presented. The results not only preserve more judgment information, but also reflect the decision-maker's risk preference. The objectivity of rough set is combined with the subjectivity of analytic hierarchy process, forming analytic hierarchy process based on interval rough number. Finally, an example is used to illustrate the feasibility of the proposed method.

关键词

粗糙集 / 层次分析法 / 区间粗糙数 / 判断矩阵

Key words

rough set / analytic hierarchy process / interval rough number / judgment matrix

引用本文

导出引用
吕跃进, 杨燕华. 区间粗糙数层次分析法. 系统工程理论与实践, 2018, 38(3): 786-793 https://doi.org/10.12011/1000-6788(2018)03-0786-08
LÜ Yuejin, YANG Yanhua. Analytic hierarchy process based on interval rough number. Systems Engineering - Theory & Practice, 2018, 38(3): 786-793 https://doi.org/10.12011/1000-6788(2018)03-0786-08
中图分类号: N945    C934   

参考文献

[1] Pawlak Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5):341-356.
[2] Pawlak Z. Rough sets, theoretical aspects of reasoning about data[M]. Boston:Kluwer Academic Publishers Press, 1991.
[3] Chen D G, Kwong S, He Q, et al. Geometrical interpretation and applications of membership functions with fuzzy rough sets[J]. Fuzzy Sets and Systems, 2012, 193(16):122-135.
[4] Yang H L, Li S G, Wang S, et al. Bipolar fuzzy rough set model on two different universes and its application[J]. Knowledge-Based Systems, 2012, 35(15):94-101.
[5] 张文修, 吴伟志, 梁吉业, 等. 粗糙集理论与方法[M]. 北京:科学出版社, 2001.Zhang W X, Wu W Z, Liang J Y, et al. Rough set theory and method[M]. Beijing:Science Press, 2001.
[6] Saaty T L. The analytic hierarchy process[M]. New York:McGraw-Hill, 1980.
[7] 李俊, 谭跃进, 张杰. 一种基于模糊AHP的军事信息网络效能分析算法[J]. 系统工程, 2008, 26(9):99-103.Li J, Tan Y J, Zhang J. Research on effectiveness analysis algorithm of military information network based on fuzzy AHP[J]. Systems Engineering, 2008, 26(9):99-103.
[8] Liberatore M J, Nydick R L. The analytic hierarchy process in medical and health care decision making:A literature review[J]. European Journal of Operational Research, 2008, 189(1):194-207.
[9] Zhang J Q. The application of analytic hierarchy process in mine gas prevention system[J]. Procedia Engineering, 2011, 26:1576-1584.
[10] Aydogan E K. Performance measurement model for Turkish aviation firms using the rough-AHP and TOPSIS methods under fuzzy environment[J]. Expert Systems with Applications, 2011, 38(4):3992-3998.
[11] 王汉斌, 杨鑫. 一种基于AHP-RS的组合权重确定方法[J]. 中国安全生产科学技术, 2010, 6(6):155-160.Wang H B, Yang X. A new method of ascertaining weight based on analytic hierarchy process and rough set theory[J]. Journal of Safety Science and Technology, 2010, 6(6):155-160.
[12] 叶军, 田秀梅. 一种基于粗糙集的层次分析判断矩阵的构造方法[J]. 南昌大学学报(理科版), 2010, 34(5):438-442.Ye J, Tian X M. An approach to generating AHP comparison matrix based on rough sets[J]. Journal of Nanchang University (Natural Science), 2010, 34(5):438-442.
[13] 徐涛, 史开泉. 基于粗糙集理论的AHP层次分析法[J]. 三明学院学报, 2006, 23(4):416-421.Xu T, Shi K Q. The method of analytical hierarchy process based on rough set[J]. Journal of Sanming University, 2006, 23(4):416-421.
[14] 张雪峰,田晓东,张庆灵.基于粗糙集理论和层次分析的数据约简[J].东北大学学报(自然科学版), 2008, 29(1):21-24.Zhang X F, Tian X D, Zhang Q L. Data reduction based on rough set theory and hierarchic analysis[J]. Journal of Northeastern University (Natural Science), 2008, 29(1):21-24.
[15] Zhai L Y, Khoo L P, Zhong Z W. A rough set enhanced fuzzy approach to quality function deployment[J]. International Journal of Advanced Manufacturing Technology, 2008, 37(5):613-624.
[16] Lee C, Lee H, Seol H, et al. Evaluation of new service concepts using rough set theory and group analytic hierarchy process[J]. Expert Systems with Applications, 2012, 39(3):3404-3412.
[17] Liu B D. Theory and practice of uncertain programming[M]. Heidelberg:Physica-Verlag, 2002.
[18] 曾玲, 曾祥艳. 一类区间粗糙数型多属性决策方法研究[J]. 控制与决策, 2010, 25(11):1757-1760.Zeng L, Zeng X Y. Research on a class of multiple attribute decision making method with interval rough numbers[J]. Control and Decision, 2010, 25(11):1757-1760.
[19] 王坚强, 唐平. 基于区间粗糙算子的粗糙随机多准则决策方法[J]. 控制与决策, 2011, 26(7):1056-1059.Wang J Q, Tang P. Rough stochastic multi-criteria decision-making approach based on interval rough operators[J]. Control and Decision, 2011, 26(7):1056-1059.
[20] Liu Y Y, Lü Y J. A multiple attribute decision making method with interval rough numbers based on the possibility degree[C]//International Conference on Natural Computation. IEEE, 2014:407-411.
[21] Slowinski R, Vanderpooten D. A generalized definition of rough approximations based on similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336.
[22] 翁世洲, 吕跃进. 区间粗糙数的排序方法及其应用[J]. 南京大学学报(自然科学版), 2015, 51(4):817-825.Weng S Z, Lü Y J. Sorting method with interval rough number and its application[J]. Journal of Nanjing University (Natural Science), 2015, 51(4):817-825.
[23] 舒康, 梁镇韩. AHP中的指数标度法[J]. 系统工程理论与实践, 1990, 10(1):6-8.Shu K, Liang Z H. Index number scale in AHP[J]. Systems Engineering-Theory & Practice, 1990, 10(1):6-8.
[24] 陈迁, 王浣尘. AHP方法判断尺度的合理定义[J]. 系统工程, 1996(5):18-20.Chen Q, Wang H C. Proper definition of criteria in AHP[J]. Systems Engineering, 1996(5):18-20.
[25] 杨永清, 许先云. 改进的层次分析法用于矿井安全管理的综合评价[J]. 系统工程理论与实践, 1999, 19(6):121-125.Yang Y Q, Xu X Y. The application of improved AHP method in the safety management evaluation for mine[J]. Systems Engineering-Theory & Practice, 1999, 19(6):121-125.
[26] 吕跃进. 标度系统一致性矩阵容量的计算方法[J].数学的实践与认识, 2003, 33(9):102-107.Lü Y J. Method of counting numbers of consistent matrixes[J]. Mathematics on Practice and Theory, 2003, 33(9):102-107.
[27] 侯岳衡,沈德家. 指数标度及其与几种标度的比较[J]. 系统工程理论与实践, 1995, 15(10):43-46.Hou Y H, Shen D J. Index number scale and comparison with other scales[J]. Systems Engineering-Theory & Practice, 1995, 15(10):43-46.
[28] 丁俭, 王华, 赵敏.一种简明的群体决策AHP模型及新的标度方法[J]. 管理工程学报, 2000, 14(1):16-18.Ding J, Wang H, Zhao M. A brief group decision-making model of AHP and a new scale method[J]. Journal of Industrial Engineering/Engineering Management, 2000, 14(1):16-18.
[29] 吴小欢, 覃菊莹, 吕跃进. 区间数判断矩阵的一致性及权重计算[J]. 模糊系统与数学, 2007, 21(5):113-119.Wu X H, Qin J Y, Lü Y J. The consistency of interval number matrix and it's vectors' computing[J]. Fuzzy Systems and Mathematics, 2007, 21(5):113-119.

基金

国家自然科学基金(71361002);广西自然科学基金(2013GXNSFAA019016)
PDF(589 KB)

487

Accesses

0

Citation

Detail

段落导航
相关文章

/