考虑不完美维修的定期检测与备件策略联合优化

赵斐, 刘学娟

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (12) : 3201-3214.

PDF(1267 KB)
PDF(1267 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (12) : 3201-3214. DOI: 10.12011/1000-6788(2017)12-3201-14
论文

考虑不完美维修的定期检测与备件策略联合优化

    赵斐1,2, 刘学娟3
作者信息 +

Joint optimization of periodical inspection and spare parts policies considering imperfect maintenance

    ZHAO Fei1,2, LIU Xuejuan3
Author information +
文章历史 +

摘要

针对退化过程服从三阶段故障过程的单部件系统提出了定期检测与备件订购策略联合优化.该策略下,根据检测时系统的状态执行不同的维修活动:当系统处于正常状态,不执行任何维修活动;若识别轻缺陷进行不完美维修并采用比例役龄回退模型描述不完美维修效果;若识别严重缺陷则更换系统.当更换系统时需考虑备件状态:若处于存货状态则立即更换,若正处于途中则到货时更换,若未订货需立即订货并在到货时刻更换.考虑所有更新事件采用更新报酬理论建立以最小化单位时间内期望成本为目标的模型,同时优化检测周期和订货点.最后,设计枚举优化算法和离散仿真算法求解模型,并在算例分析中验证模型的有效性和适用性.

Abstract

This paper proposed a joint periodical inspection and spare parts policy for a single-unit system subject to a three-stage failure process. In such a policy different maintenance activities are performed depending on the state of the system at inspections. When the system is in the normal state, do nothing; imperfect maintenance (IPM) is performed once a minor defect is found and the proportional age reduction model is adopted to describe the effect of IPM; however, once a severe defect is detected the system should be replaced. The spare parts state should be considered if the replacement is required for the system, and there are three different scenarios. The first is that spare parts are available such that replacement can be carried out immediately, the second is that spare parts have been ordered but not delivered so a delayed replacement is performed till the arrival time of spare parts, and the last is that no spare parts are ordered then an immediate order is placed and replacement till the arrival time of spare parts. The objective function minimizing the long-run expected cost per unit time is developed by considering all possible renewal events using the renewal award theorem in order to optimize the inspection interval and the ordering point. Finally, the enumeration optimization algorithm and discrete simulation algorithm are designed, respectively; and the effectiveness and applicability of the proposed model are illustrated by a numerical example.

关键词

检测 / 预防性维修 / 不完美维修 / 备件 / 延迟时间 / 更新报酬理论

Key words

inspection / preventive maintenance / imperfect maintenance / spare parts / delay time / renewal award theorem

引用本文

导出引用
赵斐 , 刘学娟. 考虑不完美维修的定期检测与备件策略联合优化. 系统工程理论与实践, 2017, 37(12): 3201-3214 https://doi.org/10.12011/1000-6788(2017)12-3201-14
ZHAO Fei , LIU Xuejuan. Joint optimization of periodical inspection and spare parts policies considering imperfect maintenance. Systems Engineering - Theory & Practice, 2017, 37(12): 3201-3214 https://doi.org/10.12011/1000-6788(2017)12-3201-14
中图分类号: TB114.3   

参考文献

[1] Wang W, Syntetos A A. Spare parts demand:Linking forecasting to equipment maintenance[J]. Transportation Research Part E:Logistics & Transportation Review, 2011, 47(6):1194-1209.
[2] Ahmad R, Kamaruddin S. An overview of time-based and condition-based maintenance in industrial application[J]. Computers & Industrial Engineering, 2012, 63(1):135-149.
[3] Shibuya T, Dohi T, Osaki S. Optimal continuous review policies for spare part provisioning with random lead times[J]. International Journal of Production Economics, 1998, 55(3):257-271.
[4] Kawai H. An optimal ordering and replacement policy of a Markovian degradation system under incomplete observation:part Ⅱ[J]. Journal of the Operations Research Society of Japan, 1983, 26(6705):279-292.
[5] Horenbeek A V, Buré J, Cattrysse D, et al. Joint maintenance and inventory optimization systems:A review[J]. International Journal of Production Economics, 2013, 143(2):499-508.
[6] Jaarsveld W V, Dekker R. Spare parts stock control for redundant systems using reliability centered maintenance data[J]. Reliability Engineering & System Safety, 2011, 96(11):1576-1586.
[7] Nosoohi I, Hejazi S R. A multi-objective approach to simultaneous determination of spare part numbers and preventive replacement times[J]. Applied Mathematical Modelling, 2011, 35(35):1157-1166.
[8] Wang L, Chu J, Mao W. A condition-based order-replacement policy for a single-unit system[J]. Applied Mathematical Modelling, 2008, 32(11):2274-2289.
[9] Wang L, Chu J, Mao W. A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure[J]. European Journal of Operational Research, 2009, 194(1):184-205.
[10] Wang Z Q, Wang W, Hu C H, et al. A prognostic-information-based order-replacement policy for a non-repairable critical system in service[J]. IEEE Transactions on Reliability, 2014, 64(2):1-16.
[11] Vaughan T S. Failure replacement and preventive maintenance spare parts ordering policy[J]. European Journal of Operational Research, 2005, 161(1):183-190.
[12] Panagiotidou S. Joint optimization of spare parts ordering and maintenance policies for multiple identical items subject to silent failures[J]. European Journal of Operational Research, 2014, 235(235):300-314.
[13] Wang L, Hu H, Wang Y, et al. The availability model and parameters estimation method for the delay time model with imperfect maintenance at inspection[J]. Applied Mathematical Modelling, 2011, 35(6):2855-2863.
[14] Zhang M, Gaudoin O, Xie M. Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance[J]. European Journal of Operational Research, 2015, 245(2):531-541.
[15] Yu M, Tang Y, Fu Y, et al. A deteriorating repairable system with stochastic lead time and replaceable repair facility[J]. Computers & Industrial Engineering, 2012, 62(2):609-615.
[16] Wang W. An overview of the recent advances in delay-time-based maintenance modelling[J]. Reliability Engineering & System Safety, 2012, 106(5):165-178.
[17] Wang W. A joint spare part and maintenance inspection optimisation model using the delay-time concept[J]. Reliability Engineering & System Safety, 2011, 96(11):1535-1541.
[18] Wang W. A stochastic model for joint spare parts inventory and planned maintenance optimisation[J]. European Journal of Operational Research, 2012, 216(1):127-139.
[19] Wang W. An inspection model based on a three-stage failure process[J]. Reliability Engineering & System Safety, 2011, 96(7):838-848.
[20] 王文彬, 赵斐, 彭锐. 基于三阶段故障过程的多重点检策略优化模型[J]. 系统工程理论与实践, 2014, 34(1):223-232.Wang W B, Zhao F, Peng R. Modeling of the optimal multiple inspection policy based on a three-stage failure process[J]. Systems Engineering-Theory & Practice, 2014, 34(1):223-232.
[21] 王慧颖, 王文彬. 改进的基于三阶段故障过程状态检测模型[J]. 系统工程与电子技术, 2015, 37(7):1709-1716.Wang H Y, Wang W B. Improved inspection model based on a three-stage failure process[J]. Systems Engineering and Electronics, 2015, 37(7):1709-1716.
[22] Ross S M. Stochastic processes[M]. New York:John Wiley & Sons, 1983.

基金

国家自然科学基金(71701038);教育部人文社会科学研究项目(16YJC630174);中央高校基本科研业务费(N152303 004);河北省高等学校科学技术研究项目(QN2017104)
PDF(1267 KB)

500

Accesses

0

Citation

Detail

段落导航
相关文章

/