求解大规模优化问题的改进鲸鱼优化算法

龙文, 蔡绍洪, 焦建军, 唐明珠, 伍铁斌

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (11) : 2983-2994.

PDF(913 KB)
PDF(913 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (11) : 2983-2994. DOI: 10.12011/1000-6788(2017)11-2983-12
论文

求解大规模优化问题的改进鲸鱼优化算法

    龙文1,2, 蔡绍洪1, 焦建军2, 唐明珠3, 伍铁斌4
作者信息 +

Improved whale optimization algorithm for large scale optimization problems

    LONG Wen1,2, CAI Shaohong1, JIAO Jianjun2, TANG Mingzhu3, WU Tiebin4
Author information +
文章历史 +

摘要

提出一种基于非线性收敛因子的改进鲸鱼优化算法(简记为IWOA)用于求解大规模复杂优化问题.为算法全局搜索奠定基础,在搜索空间中利用对立学习策略进行初始化鲸鱼个体位置;设计一种随进化迭代次数非线性变化的收敛因子更新公式以协调WOA算法的探索和开发能力;对当前最优鲸鱼个体执行多样性变异操作以减少算法陷入局部最优的概率.选取15个大规模(200维、500维和1000维)标准测试函数进行数值实验,结果表明,IWOA在求解精度和收敛速度方面明显优于其他对比算法.

Abstract

An improved whale optimization algorithm (WOA) based on nonlinear convergence factor, named IWOA, is proposed for solving large scale complicated optimization problems. In the proposed algorithm, opposition-based learning strategy is used to initial the whale individuals' position in the search space, which strengthened the diversity of individuals in the global searching process. A novel nonlinearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation. It then disturbed the current optimal individual by diversity mutation operator in the process of the search so as to avoid the possibility of falling into local optimum. Simulation experiments were conducted on the 15 large scale (200, 500, and 1000 dimension) conventional test functions. The experimental results show that the proposed IWOA has better performance in solution precision and convergence rate than other comparison methods.

关键词

鲸鱼优化算法 / 对立学习策略 / 非线性收敛因子 / 大规模优化问题 / 多样性变异

Key words

whale optimization algorithm / opposition-based learning strategy / nonlinear convergence factor / large scale optimization problem / diversity mutation

引用本文

导出引用
龙文 , 蔡绍洪 , 焦建军 , 唐明珠 , 伍铁斌. 求解大规模优化问题的改进鲸鱼优化算法. 系统工程理论与实践, 2017, 37(11): 2983-2994 https://doi.org/10.12011/1000-6788(2017)11-2983-12
LONG Wen , CAI Shaohong , JIAO Jianjun , TANG Mingzhu , WU Tiebin. Improved whale optimization algorithm for large scale optimization problems. Systems Engineering - Theory & Practice, 2017, 37(11): 2983-2994 https://doi.org/10.12011/1000-6788(2017)11-2983-12
中图分类号: TP301.6   

参考文献

[1] Rahnamayan S, Wang G. Solving large scale optimization problems by opposition-based differential evolution[J]. WSEAS Transactions on Computers, 2008, 7(10):1792-1804.
[2] 黄光球, 李涛, 陆秋琴. 人工记忆优化算法[J]. 系统工程理论与实践, 2014, 34(11):2900-2912. Huang G Q, Li T, Lu Q Q. Artificial memory-based optimization[J]. Systems Engineering-Theory & Practice, 2014, 34(11):2900-2912.
[3] 张芳芳, 王建军, 张勇. 少控制参数的分层式骨干粒子群优化算法[J]. 系统工程理论与实践, 2015, 35(12):3217-3224. Zhang F F, Wang J J, Zhang Y. Layer bare-bones particle swarm optimization algorithm with few control parameters[J]. Systems Engineering-Theory & Practice, 2015, 35(12):3217-3224.
[4] Rao R, Savsani V, Vakharia D. Teaching-learning-based optimization:An optimization method for continuous nonlinear large scale problems[J]. Information Sciences, 2012, 183:1-15.
[5] Sayed E, Essam D, Sarker R, et al. Decomposition-based evolutionary algorithm for large scale constrained problems[J]. Information Sciences, 2015, 316:457-486.
[6] Tang D, Cai Y, Zhao J, et al. A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems[J]. Information Sciences, 2014, 289:162-189.
[7] Ali M Z, Awad N H, Suganthan P N. Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization[J]. Applied Soft Computing, 2015, 33:304-327.
[8] 黄光球, 赵魏娟, 陆秋琴. 求解大规模优化问题的可全局收敛蝙蝠算法[J]. 计算机应用研究, 2013, 30(5):1323-1328. Huang G Q, Zhao W J, Lu Q Q. Bat algorithm with global convergence for solving large scale optimization problem[J]. Application Research of Computers, 2013, 30(5):1323-1328.
[9] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
[10] Watkins W A, Schevill W E. Aerial observation of feeding behavior in four baleen whales:Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus[J]. Journal of Mammalogy, 1979, 60(1):155-163.
[11] Haupt R, Haupt S. Practical genetic algorithm[M]. New York:John Wiley and Sons, 2004.
[12] Tizhoosh H R. Opposition-based learning:A new scheme for machine intelligence[C]//Proceedings of the IEEE International Conference on Intelligent Agents, Vienna, IEEE Press, 2005:695-701.
[13] Rahnamayan S, Tizhoosh H R, Sakama M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1):64-79.
[14] Wang H, Wu Z, Rahamayan S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20):4699-4714.
[15] 周新宇, 吴志健, 王晖, 等. 一种精英反向学习的粒子群优化算法[J]. 电子学报, 2013, 41(8):1647-1652. Zhou X Y, Wu Z J, Wang H, et al. Elite opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2013, 41(8):1647-1652.
[16] 魏政磊, 赵辉, 李牧东, 等. 控制参数值非线性调整策略的灰狼优化算法[J]. 空军工程大学学报(自然科学版), 2016, 17(3):68-72. Wei Z L, Zhao H, Li M D, et al. A grey wolf optimization algorithm based on nonlinear adjustment strategy of control parameter[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(3):68-72.
[17] Wang Y, Cai Z X, Zhou Y R, et al. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J]. Structural and Multidisciplinary Optimization, 2009, 37(1):395-413.
[18] Engelbrecht A P. Fundamentals of computational swarm intelligence[M]. New York:John Wiley and Sons, 2004.
[19] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):398-417.
[20] Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1):55-66.
[21] Liang J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):281-295.
[22] Igel C, Hansen N, Roth S. Covariance matrix adaptation for multi-objective optimization[J]. Evolutionary Computation, 2007, 15(1):1-28.
[23] Tou S, Zhang J, Yong L, et al. A harmony search algorithm for high-dimensional multimodal optimization problems[J]. Digital Signal Processing, 2015, 46:151-163.

基金

国家自然科学基金(61463009,61403046);贵州省科学技术基金(黔科合基础[2016]1022);商务部与贵州财经大学联合基金(2016SWBZD13);湖南省自然科学基金(2016JJ3079)
PDF(913 KB)

808

Accesses

0

Citation

Detail

段落导航
相关文章

/