基于改进PSO算法的调和稳定跳跃下随机波动模型期权定价与套期保值

宫晓莉, 庄新田

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (11) : 2765-2776.

PDF(856 KB)
PDF(856 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (11) : 2765-2776. DOI: 10.12011/1000-6788(2017)11-2765-12
论文

基于改进PSO算法的调和稳定跳跃下随机波动模型期权定价与套期保值

    宫晓莉, 庄新田
作者信息 +

Option pricing and hedging for tempered stable jumps driven stochastic volatility models based on improved PSO algorithm

    GONG Xiaoli, ZHUANG Xintian
Author information +
文章历史 +

摘要

为同时捕获金融收益率分布的尖峰、厚尾、有偏特性及波动率扩散中的异方差效应、集聚效应,联合刻画股价动态演变中的无限跳跃变化,将无限活跃纯跳跃Lévy分布中的经典调和稳定分布(CTS)引入平方根CIR模型为基础的随机波动率(SV)过程,建立了经典调和稳定分布下随机波动(CTSSV)模型,重构了纯跳跃Lévy分布驱动的随机波动(LVSV)模型框架.利用LVSV模型特征函数表达式,采用分数阶快速傅里叶变换(FRFT)方法推导了欧式期权定价公式.由于模型参数众多和目标函数高维积分困难,提出了多区域自适应粒子群优化算法(MAPSO)估计LVSV模型参数.利用FRFT技术和MAPSO参数估计结果,使用CTSSV模型和方差伽马随机波动(VGSV)模型对恒生指数期权数据进行欧式期权定价和方差-最优期权套期保值,实证研究结果证明了MAPSO算法的优越性和CTSSV模型的有效性.

Abstract

In order to capture leptokurtic feature, thick tail phenomenon in skewed financial returns, and capture heteroscedasticity effect, clustering effect in volatility diffusion process simultaneously, and to portray infinite jump changes in stock price dynamic process, the classical tempered stable (CTS) distribution in infinite activity pure jump Lévy distributions is introduced into the square root CIR process based stochastic volatility (SV) model to build an infinite activity tempered stable distribution driven stochastic volatility (CTSSV) model, thus we reconstruct the infinite activity Lévy process driven stochastic volatility (LVSV) model scheme. Using analytic characteristic function formula of LVSV model, and fractional fast Fourier transform (FRFT) technique, analytic European option pricing formula is derived. Because there are many numbers of model parameters and the difficulty of high dimensionality integration, we introduce multi-basin adaptive particle swarm optimization (MAPSO) algorithm to estimate LVSV model's parameters. Employ the characteristic function based FRFT technique and MAPSO parameter estimation techniques, we conduct experiment on Hang Seng Index Options data for option pricing and variance-optimal option hedging by CTS model and variance gamma stochastic volatility (VGSV) model. Empirical studies demonstrate the effectiveness and superiority of the MAPSO algorithm as well as the CTSSV model.

关键词

纯跳跃Lévy过程 / 经典调和稳定分布 / 随机波动 / 分数阶快速傅里叶变换 / 改进粒子群优化算法

Key words

infinite activity Lévy process / classical tempered stable distribution / stochastic volatility / fractional fast Fourier transform / improved PSO algorithm

引用本文

导出引用
宫晓莉 , 庄新田. 基于改进PSO算法的调和稳定跳跃下随机波动模型期权定价与套期保值. 系统工程理论与实践, 2017, 37(11): 2765-2776 https://doi.org/10.12011/1000-6788(2017)11-2765-12
GONG Xiaoli , ZHUANG Xintian. Option pricing and hedging for tempered stable jumps driven stochastic volatility models based on improved PSO algorithm. Systems Engineering - Theory & Practice, 2017, 37(11): 2765-2776 https://doi.org/10.12011/1000-6788(2017)11-2765-12
中图分类号: F830   

参考文献

[1] Carr P, Geman H, Madan D B, et al. The fine structure of asset returns:An empirical investigation[J]. The Journal of Business, 2002, 75(2):305-332.
[2] Sahalia Y A, Jacod J. Estimating the degree of activity of jumps in high frequency data[J]. Annals of Statistics, 2009, 37(5):2202-2244.
[3] Klingler S, Kim Y S, Svetlozar T. Option pricing with time-changed Lévy processes[J]. Applied Financial Economics, 2013, 23(15):1231-1238.
[4] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1):125-144.
[5] Kou S G. A jump diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101.
[6] Madan D, Carr P, Chang E. The variance gamma process and option pricing[J]. European Finance Review, 1998, 2(1):79-105.
[7] Barndorff-Nielsen O E. Processes of normal inverse Gaussian type[J]. Finance and Stochastics, 1997, 2(1):41-68.
[8] Carr P, Wu L. Time-changed Lévy processes and option pricing[J]. Journal of Financial Economics, 2002, 71(1):113-141.
[9] Rosinski J. Tempering stable processes[J]. Stochastic Processes and their Applications, 2007, 117(6):677-707.
[10] Mozumder S, Sorwar G, Dowd K. Option pricing under non-normality:A comparative analysis[J]. Review of Quantitative Finance and Accounting, 2013, 40(2):273-292.
[11] Abdelrazeq I. Model verification for Lévy-driven Ornstein-Uhlenbeck processes with estimated parameters[J]. Statistics and Probability Letters, 2015, 104:26-35.
[12] 吴恒煜, 朱福敏, 胡根华, 等. 基于参数学习的GARCH动态无穷活动率Lévy过程的欧式期权定价[J]. 系统工程理论与实践, 2014, 34(10):2465-2482.Wu H Y, Zhu F M, Hu G H, et al. European option pricing for GARCH dynamic infinite activity Lévy processes based on parameter learning[J]. Systems Engineering-Theory & Practice, 2014, 34(10):2465-2482.
[13] Bates D S. Jumps and stochastic volatility:Exchange rate processes implicit in deutsche mark options[J]. The Review of Financial Studies, 1996, 9(1):69-107.
[14] Andreas K, Carol A. Stochastic volatility jump-diffusions for European equity index dynamics[J]. European Financial Management, 2013, 19(3):470-496.
[15] 周伟, 何健敏, 余德建. 随机跳变广义双指数分布下的双重跳跃扩散模型及应用[J]. 系统工程理论与实践, 2013, 33(11):2746-2756.Zhou W, He J M, Yu D J. Double-jump diffusion model based on the generalized double exponential distribution of the random jump and its application[J]. Systems Engineering-Theory & Practice, 2013, 33(11):2746-2756.
[16] Huang J X, Zhu W L, Ruan X F. Option pricing using the fast Fourier transform under the double exponential jump model with stochastic volatility and stochastic intensity[J]. Journal of Computational and Applied Mathematics, 2014, 263(1):152-159.
[17] Kim Y, Rachev S, Bianchi M, et al. Tempered stable and tempered infinitely divisible GARCH models[J]. Journal of Banking and Finance, 2010, 34(9):2096-2109.
[18] Schoutens W, Symens S. The pricing of exotic options by Monte-Carlo simulations in a Lévy market with stochastic volatility[J]. International Journal of Theoretical and Applied Finance, 2003, 6(8):839-864.
[19] Creal D D. Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models[J]. Computational Statistics and Data Analysis, 2008, 52(6):2863-2876.
[20] Bianchi M L, Fabozzi F J. Investigating the performance of non-Gaussian stochastic intensity models in the calibration of credit default swap spreads[J]. Computational Economics, 2015, 46(2):243-273.
[21] Sun Q, Xu W D. Pricing foreign equity option with stochastic volatility[J]. Physica A, 2015, 437:89-100.
[22] Liang C X, Li S H. Option pricing and hedging in incomplete market driven by Normal Tempered Stable process with stochastic volatility[J]. Journal of Mathematical Analysis and Applications, 2015, 423(1):701-719.
[23] Yu C L, Li H T, Wells M T. MCMC estimation of Levy jump models using stock and option prices[J]. Mathematical Finance, 2011, 21(3):383-422.
[24] Yang S, Lee J. Multi-basin particle swarm intelligence method for optimal calibration of parametric Levy models[J]. Expert Systems with Applications, 2012, 39(1):482-493.
[25] Fastrich B, Winker P. Combining forecasts with missing data:Making use of portfolio theory[J]. Computational Economics, 2014, 44(2):127-152.
[26] Krink T, Paterlini S. Multiobjective optimization using differential evolution for real-world portfolio optimization[J]. Computational Management Science, 2011, 8(1):157-179.
[27] Sato K. Lévy processes and infinitely divisible distributions[M]. Cambridge:Cambridge University Press, 1999.
[28] Kim Y S, Rachev S, Bianchi M. Time series analysis for financial market meltdowns[J]. Journal of Banking and Finance, 2011, 35(8):1879-1891.
[29] Carr P, Madan D. Option valuation using the fast Fourier transform[J]. Journal of Computational Finance, 2001, 2:61-73.
[30] 吴鑫育, 杨文昱, 马超群, 等. 基于非仿射随机波动率模型的期权定价研究[J]. 中国管理科学, 2013, 21(1):1-7.Wu X Y, Yang W Y, Ma C Q, et al. Option pricing under non-affine stochastic volatility model[J]. Chinese Journal of Management Science, 2013, 21(1):1-7.
[31] Lord R, Kahl C. Optimal Fourier inversion in semi-analytical option pricing[J]. Journal of Computational Finance, 2007, 10:1-30.
[32] Chourdakis K. Option pricing using the fractional FFT[J]. Journal of Computation Finance, 2005, 8:1-18.
[33] Bailey D H, Swarztrauber P N. The fractional Fourier transform and applications[J]. SIAM Review, 1998, 33(3):389-404.
[34] 刘志东, 刘雯宇. Lévy过程驱动的非高斯OU随机波动模型及其贝叶斯参数统计推断方法研究[J]. 中国管理科学, 2015, 23(8):1-9.Liu Z D, Liu W Y. The non Ornstein-Uhlenbeck models driven by the general Lévy process and its Bayesian inference[J]. Chinese Journal of Management Science, 2015, 23(8):1-9.
[35] Fang F, Jonsson H, Oosterlee K, et al. Fast valuation and calibration of credit default swaps under Levy dynamics[J]. Journal of Computational Finance, 2010, 14(2):57-86.
[36] Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, Piscataway, New Jersey, 1995:1942-1948.
[37] Pehlivanoglu Y V. A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3):436-452.
[38] Hubalek F, Kallsen J, Krawczyk L. Variance-optimal hedging for processes with stationary independent increments[J]. Annals of Applied Probability, 2006, 16(2):853-885.
[39] Kallsen J, Pauwels A. Variance-optimal hedging for time-changed Lévy processes[J]. Applied Mathematical Finance, 2011, 18(1):1-28.

基金

国家自然科学基金(71671030,71571038)
PDF(856 KB)

Accesses

Citation

Detail

段落导航
相关文章

/