基于奇异谱分析的我国航空客运量集成预测模型

梁小珍, 乔晗, 汪寿阳, 张珣

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (6) : 1479-1488.

PDF(1246 KB)
PDF(1246 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (6) : 1479-1488. DOI: 10.12011/1000-6788(2017)06-1479-10
论文

基于奇异谱分析的我国航空客运量集成预测模型

    梁小珍1, 乔晗2, 汪寿阳2,3, 张珣3
作者信息 +

An integrated forecasting model for air passenger traffic in China based on singular spectrum analysis

    LIANG Xiaozhen1, QIAO Han2, WANG Shouyang2,3, ZHANG Xun3
Author information +
文章历史 +

摘要

针对时间序列包含噪声以及单一模型可能存在预测表现不稳定的问题,本文提出了一个基于奇异谱分析(SSA)的集成预测模型,并将其运用于我国年度航空客运量的预测中.首先,采用SSA方法对原始时间序列进行分解和重构,得到一个剔除噪声的时间序列,然后将其作为单整自回归移动平均模型(ARIMA)、支持向量回归模型(SVR)、Holt-Winters方法(HW)等单一模型的输入并进行预测,接着再采用加权平均集成预测方法(WA)将三种单一模型的预测结果进行综合集成.通过与各单一模型、基于经验模态分解方法(EMD)的模型以及简单平均集成预测方法(SA)的预测结果进行对比发现,本文所建模型具有较高的预测精度和较稳定的预测表现.最后,采用本文的模型对我国2014-2016年年度航空客运量进行了预测.

Abstract

Considering the noise contained in time-series data and the sometimes poor forecasting performance of single model, this paper proposes an integrated model based on singular spectrum analysis (SSA) for Chinese annual air passenger traffic forecasting. In the modeling process, the original time series was first decomposed into several different components using SSA, and the main components were extracted to reconstruct a new time series with the noise removed. Then, the reconstructed time series was predicted with three single models respectively, including autoregressive integrated moving average (ARIMA), support vector regression (SVR) and Holt-Winters method (HW). After that, the weighted average method (WA) was used to integrate the prediction results of the three single models above. The performance of the proposed model was compared with those of three single models (ARIMA, SVR, and HW), corresponding models based on another decomposition method (empirical mode decomposition, EMD) and another integrated forecasting method (simple average method, SA). The results suggested that the proposed model could achieve better forecasting performance than the remaining ones. Finally, annual air passenger traffic in China from 2014 to 2016 was predicted using the proposed model.

关键词

航空客运量 / 奇异谱分析(SSA) / 单整自回归移动平均模型(ARIMA) / 支持向量回归模型(SVR) / Holt-Winters方法 / 集成预测

Key words

air passenger traffic / singular spectrum analysis (SSA) / autoregressive integrated moving average (ARIMA) / support vector regression (SVR) / Holt-Winters method / integrated forecasting

引用本文

导出引用
梁小珍 , 乔晗 , 汪寿阳 , 张珣. 基于奇异谱分析的我国航空客运量集成预测模型. 系统工程理论与实践, 2017, 37(6): 1479-1488 https://doi.org/10.12011/1000-6788(2017)06-1479-10
LIANG Xiaozhen , QIAO Han , WANG Shouyang , ZHANG Xun. An integrated forecasting model for air passenger traffic in China based on singular spectrum analysis. Systems Engineering - Theory & Practice, 2017, 37(6): 1479-1488 https://doi.org/10.12011/1000-6788(2017)06-1479-10
中图分类号: F562.8    F272.1   

参考文献

[1] Horonjeff R, McKelvey F X, Sproule W J, et al. Planning and design of airports[M]. New York:McGraw-Hill, 1983.
[2] Polt S. Revenue management tutorial[R]. Presentation at AGIFORS Reservations & Yield Management Study Group, 2002.
[3] Lansing J B, Liu J C, Suits D B. An analysis of interurban air travel[J]. The Quarterly Journal of Economics, 1961, 75(1):87-95.
[4] Ghobrial A. An aggregate demand model for domestic airlines[J]. Journal of Advanced Transportation, 1992, 26(2):105-119.
[5] Poore J W. Forecasting the demand for air transportation services[J]. Journal of Transportation Engineering, 1993, 19(5):22-34.
[6] Alperovich G, Machnes Y. The role of wealth in the demand for international air travel[J]. Journal of Transport Economics and Policy, 1994, 28(2):163-173.
[7] Ba-Fail A O, Abed S Y, Jasimuddin S M. The determinants of domestic air travel demand in the Kingdom of Saudi Arabia[J]. Journal of Air Transportation World Wide, 2000, 5(2):72-86.
[8] Bougas C. Forecasting air passenger traffic flows in Canada:An evaluation of time series models and combination methods[M]. Quebec:Laval University, 2013.
[9] Tsui W, Balli H, Gilbey A, et al. Forecasting of Hong Kong airport's passenger throughput[J]. Tourism Management, 2014, 42(6):62-76.
[10] Jing C, Sun H. Airline demand forecast based on panel data model[C]//2010 IEEE International Conference on Advanced Management Science (ICAMS), 2010, 2:326-329.
[11] Law R, Au N. A neural network model to forecast Japanese demand for travel to Hong Kong[J]. Tourism Management, 1999, 20(1):89-97.
[12] Beneki C, Eeckels B, Leon C. Signal extraction and forecasting of the UK tourism income time series:A singular spectrum analysis approach[J]. Journal of Forecasting, 2012, 31(5):391-400.
[13] Bates J M, Granger C W J. The combination of forecasts[J]. Operational Research Quarterly, 1969, 20(4):451-468.
[14] Wang S Y, Yu L A, Lai K K. Crude oil price forecasting with TEI@I methodology[J]. Journal of Systems Science and Complexity, 2005, 18(2):145-166.
[15] Colebrook J M. Continuous plankton records:Zooplankton and environment, northeast Atlantic and North-Sea, 1948-1975[J]. Oceanologica Acta, 1978, 1(1):9-23.
[16] Vautard R, Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series[J]. Physica D:Nonlinear Phenomena, 1989, 35(3):395-424.
[17] Hassani H, Heravi S, Brown G, et al. Forecasting before, during, and after recession with singular spectrum analysis[J]. Journal of Applied Statistics, 2013, 40(10):2290-2302.
[18] Rocco S, Claudio M. Singular spectrum analysis and forecasting of failure time series[J]. Reliability Engineering & System Safety, 2013, 114(6):126-136.
[19] Hassani H, Heravi S, Zhigljavsky A. Forecasting European industrial production with singular spectrum analysis[J]. International Journal of Forecasting, 2009, 25(1):103-118.
[20] Kumar U, Jain V K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India[J]. Energy, 2010, 35(4):1709-1716.
[21] Xiao Y, Liu J J, Hu Y, et al. A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting[J]. Journal of Air Transport Management, 2014, 39(7):1-11.
[22] Yu L, Wang S, Lai K K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm[J]. Energy Economics, 2008, 30(5):2623-2635.
[23] 伍宗伟, 姚敏立, 马红光, 等. 基于奇异谱分解的微机械加速度计振动噪声抑制方法[J]. 振动与冲击, 2014, 33(5):70-75.Wu Z W, Yao M L, Ma H G, et al. De-noising method for MEMS accelerometers based on singular spectral analysis[J]. Journal of Vibration and Shock, 2014, 33(5):70-75.
[24] 范良. 基于EEMD去噪和果蝇支持向量机的变形预测方法研究[D]. 阜新:辽宁工程技术大学, 2013.Fan L. Study on deformation prediction method based on EEMD denoising and FOA-SVM[D]. Fuxin:Liaoning Technical University, 2013.
[25] Hu B, Li Q, Smith A. Noise reduction of hyperspectral data using singular spectral analysis[J]. International Journal of Remote Sensing, 2009, 30(9):2277-2296.
[26] Box G E P, Jenkins G M. Time series analysis:Forecasting and control[M]. San Francisco:Holden-Day, 1970.
[27] Vapnik V N. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1995:52-123.
[28] 姚潇, 余乐安. 模糊近似支持向量机模型及其在信用风险评估中的应用[J]. 系统工程理论与实践, 2012, 32(3):549-554.Yao X, Yu L A. A fuzzy proximal support vector machine model and its application to credit risk analysis[J]. Systems Engineering-Theory & Practice, 2012, 32(3):549-554.
[29] 金晶, 王行愚, 罗先国, 等. PSO-\varepsilon-SVM的回归算法[J]. 华东理工大学学报, 2006, 32(7):872-875.Jin J, Wang X Y, Luo X G, et al. Regression algorithm of PSO-\varepsilon-SVM[J]. Journal of East China University of Science and Technology, 2006, 32(7):872-875.
[30] 高铁梅. 计量经济分析方法与建模[M]. 北京:清华大学出版社, 2006.Gao T M. Econometric analysis method and modeling[M]. Beijing:Tsinghua University Press, 2006.
[31] 郑莉, 段冬梅, 陆凤彬, 等. 我国猪肉消费需求量集成预测-基于ARIMA, VAR和VEC模型的实证[J]. 系统工程理论实践, 2013, 33(4):918-925.Zheng L, Duan D M, Lu F B, et al. Integration forecast of Chinese pork consumption demand-Empirical based on ARIMA, VAR and VEC models[J]. Systems Engineering-Theory & Practice, 2013, 33(4):918-925.

基金

国家自然科学基金(71422015,71373262);国家数学与交叉科学研究中心全球宏观经济监测预测与政策模拟平台项目
PDF(1246 KB)

Accesses

Citation

Detail

段落导航
相关文章

/