基于跳跃滤波和时变参数估计的中国股市微观结构研究

刘志东, 黄雨婷, 刘雯宇

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (6) : 1393-1419.

PDF(2229 KB)
PDF(2229 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (6) : 1393-1419. DOI: 10.12011/1000-6788(2017)06-1393-27
论文

基于跳跃滤波和时变参数估计的中国股市微观结构研究

    刘志东1, 黄雨婷2, 刘雯宇1
作者信息 +

Microstructure analysis for Chinese stock market based on jump filtering and dynamic parameters estimation

    LIU Zhidong1, HUANG Yuting2, LIU Wenyu1
Author information +
文章历史 +

摘要

为了更为有效地探究微观市场结构对股票价格的影响,本文在状态空间模型框架下,同时将交易方向、带方向的交易量、交易间隔、微观噪声以及跳跃因素引入状态方程和观测方程中,建立全面的市场微观结构模型,以反映各变量对交易价格序列产生的暂时性和永久性影响.然后,在采用基于粒子滤波的非参数离群点检测方法检测跳跃并对跳跃进行滤波的基础上,运用贝叶斯最小二乘方法对微观结构模型系数、波动率以及状态变量进行实时更新和估计,在此基础上分析跳跃日度分布、日内分布、个股跳跃和共同跳跃特征,并同时判断不同交易方向、交易量的订单对价格产生的影响.最后选取2015年股灾期间、沪市股票的逐笔数据作为研究样本进行实证研究.实证结果显示:我国股票高频时间序列跳跃和共同跳跃均存在日内季节性,且跳跃频率和大小与市场信息密切相关;买卖订单对交易价格及股票价值的影响并不是完全对称的,交易价格对于微观结构的敏感度、微观结构噪声也随市场波动而发生变化,熊市中都相对更高;考虑跳跃滤波并对参数进行实时估计可以提高价格对于交易的敏感度,能更好地捕捉市场微观结构在价格发现中的作用.

Abstract

In order to effectively detect the impact of microstructure on stock prices, this paper develops a general microstructure model based on state space model. It simultaneously introduces size, direction of trades, trading intervals, microstructure noise and jumps into state equation and observation equation, thus reflecting the permanent and transitory impact these variables have on the stock price series. Then, non-parametric outliers' detection method based on particle filters is applied for detecting jumps. In the process of filtering jumps, we can also obtain real-time estimation and updates for the microstructure parameters, volatility and state variables by using Bayesian OLS. The combination of these methods make it possible to analyze intra-day seasonality, daily pattern of jumps & cojumps and simultaneously judge how trade directions and trade volume could influence prices as time goes by. Lastly, we utilize the tick-by-tick high-frequency data for Chinese stock market in 2015 turbulent period to implement empirical analysis. Results demonstrate that the jumps hidden in high-frequency stock price series show both intra-day and daily seasonality. Also the frequency and size of jumps are closely linked to the exogenous macroeconomic information. Buy and sell orders have an asymmetric impact on stock prices and fundamental values. The sensitivity of prices to microstructure variables and noise vary depending on the market conditions, among which is larger in good market circumstances. Therefore, this new model and method can efficiently increase the price sensitivity to transactions, thus better grasping the function of stock market microstructure in price discovery process.

关键词

市场微观结构 / 价格影响 / 跳跃检验 / 粒子滤波

Key words

microstructure / price impact / jump detection / particle filter

引用本文

导出引用
刘志东 , 黄雨婷 , 刘雯宇. 基于跳跃滤波和时变参数估计的中国股市微观结构研究. 系统工程理论与实践, 2017, 37(6): 1393-1419 https://doi.org/10.12011/1000-6788(2017)06-1393-27
LIU Zhidong , HUANG Yuting , LIU Wenyu. Microstructure analysis for Chinese stock market based on jump filtering and dynamic parameters estimation. Systems Engineering - Theory & Practice, 2017, 37(6): 1393-1419 https://doi.org/10.12011/1000-6788(2017)06-1393-27
中图分类号: F830.91   

参考文献

[1] Glosten L R, Milgrom P R. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders[J]. Journal of Financial Economics, 1985, 14(1):71-100.
[2] Kyle A S. Continuous auctions and insider trading[J]. Econometrica:Journal of the Econometric Society, 1985, 53(6):1315-1335.
[3] Roll R. A simple implicit measure of the effective bid-ask spread in an efficient market[J]. The Journal of Finance, 1984, 39(4):1127-1139.
[4] Amihud Y, Mendelson H. Asset pricing and the bid-ask spread[J]. Journal of Financial Economics, 1986, 17(2):223-249.
[5] Brennan M J, Subrahmanyam A. Market microstructure and asset pricing:On the compensation for illiquidity in stock returns[J]. Journal of Financial Economics, 1996, 41(3):441-464.
[6] Madhavan A, Richardson M, Roomans M. Why do security prices change:A transaction-level analysis of NYSE stocks[J]. Review of Financial Studies, 1997, 10(4):1035-1064.
[7] Sadka R. Momentum and post-earnings-announcement drift anomalies:The role of liquidity risk[J]. Journal of Financial Economics, 2006, 80(2):309-349.
[8] Diamond D W, Verrecchia R E. Constraints on short-selling and asset price adjustment to private information[J]. Journal of Financial Economics, 1987, 18(2):277-311.
[9] Easley D, O'Hara M. Time and the process of security price adjustment[J]. The Journal of Finance, 1992, 47(2):577-605.
[10] Dufour A, Engle R F. Time and the price impact of a trade[J]. The Journal of Finance, 2000, 55(6):2467-2498.
[11] Rydberg T H, Shephard N. Dynamics of trade-by-trade price movements:Decomposition and models[J]. Journal of Financial Econometrics, 2003, 1(1):2-25.
[12] Bos C S. Model-based estimation of high frequency jump diffusions with microstructure noise and stochastic volatility[R]. Tinbergen Institute Discussion Paper, 2008.
[13] Andersen T G, Bollerslev T, Diebold F X, et al. Exchange rate returns standardized by realized volatility are (nearly) Gaussian[J]. Multinational Finance Journal, 2000:159-179.
[14] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2):579-625.
[15] Aït-Sahalia Y, Mykland P A, Zhang L. How often to sample a continuous-time process in the presence of market microstructure noise[J]. Review of Financial Studies, 2005, 18(2):351-416.
[16] Zhang L. Efficient estimation of stochastic volatility using noisy observations:A multi-scale approach[J]. Bernoulli, 2006, 12(6):1019-1043.
[17] Owens J P, Steigerwald D G. Noise reduced realized volatility:A Kalman filter approach[J]. Advances in Econometrics, 2006, 20:211-227.
[18] Hansen P R, Large J, Lunde A. Moving average-based estimators of integrated variance[J]. Econometric Reviews, 2008, 27(1-3):79-111.
[19] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al. Subsampling realised kernels[J]. Journal of Econometrics, 2011, 160(1):204-219.
[20] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1):1-37.
[21] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower-variation[J]. Journal of Financial Econometrics, 2006, 4(1):1-30.
[22] Jiang G J, Oomen R C A. Testing for jumps when asset prices are observed with noise:A "swap variance" approach[J]. Journal of Econometrics, 2008, 144(2):352-370.
[23] Aït-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process[J]. The Annals of Statistics, 2009, 37(1):184-222.
[24] Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2):276-288.
[25] Fan J, Wang Y. Multi-scale jump and volatility analysis for high-frequency financial data[J]. Journal of the American Statistical Association, 2007, 102(480):1349-1362.
[26] Podolskij M, Vetter M. Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps[J]. Bernoulli, 2009, 15(3):634-658.
[27] 李胜歌, 张世英. 金融高频数据的偏差校正"已实现"双幂次变差[J]. 系统工程学报, 2008, 2(4):392-397.Li S G, Zhang S Y. Bias corrected bipower variation based on high-frequency financial data[J]. Journal of Systems Engineering, 2008, 23(4):392-397.
[28] 陈国进, 王占海. 我国股票市场连续性波动与跳跃性波动实证研究[J]. 系统工程理论与实践, 2010, 30(9):1554-1561.Chen G J, Wang Z H. Continuous volatility and jump volatility in China's stock market[J]. Systems Engineering-Theory & Practice, 2010, 30(9):1554-1561.
[29] 杨科, 陈浪南. 中国股市高频波动率跳跃的特征分析[J]. 系统工程学报, 2012, 27(4):492-497.Yang K, Chen L N. Jump dynamics of high-frequency volatility in Chinese stock markets[J]. Journal of Systems Engineering, 2012, 27(4):492-497.
[30] 唐勇, 张伯新. 基于高频数据的中国股市跳跃特征实证分析[J]. 中国管理科学, 2013, 21(5):29-39.Tang Y, Zhang B X. The empirical analysis of jumps characteristics of China's stock market based on high frequency data[J]. Chinese Journal of Management Science, 2013, 21(5):29-39.
[31] 欧丽莎, 袁琛, 李汉东. 中国股票价格跳跃实证研究[J]. 管理科学学报, 2011, 14(9):60-66.Ou L S, Yuan C, Li H D. Empirical research on jumps in stock price in Chinese stock markets[J]. Chinese Journal of Management Science, 2011, 14(9):60-66.
[32] 马丹, 尹优平. 噪声, 跳跃与高频价格波动:基于门限预平均实现波动的分析[J]. 金融研究, 2012(4):124-139.Ma D, Yin Y P. Noise, jump and high frequency price volatility:Based on the analysis of threshold pre-averaging realized volatility[J]. Chinese Journal of Finance, 2012(4):124-139.
[33] 唐勇, 寇贵明. 股票市场微观结构噪声, 跳跃, 流动性关系分析[J]. 中国管理科学, 2012, 20(2):11-19.Tang Y, Kou G M. Analysis on the relationship among microstructure noise, jump and liquidity in stock market[J]. Chinese Journal of Management Science, 2012, 20(2):11-19.
[34] 刘志东, 严冠. 基于半鞅过程的中国股市随机波动、跳跃和微观结构噪声统计特征研究[J]. 中国管理科学, 2016, 24(5):18-30.Liu Z D, Yan G. Analysis of the finer statistical characteristics of China stock market based on demimartingales process[J]. Chinese Journal of Management Science, 2016, 24(5):18-30.
[35] Christensen K, Oomen R C A, Podolskij M. Factor friction:Jumps at ultra high frequency[J]. Journal of Financial Economics, 2014, 114(3):576-599.
[36] Jondeau E, Lahaye J, Rockinger M. Estimating the price impact of trades in a high-frequency microstructure model with jumps[J/OL]. Journal of Banking and Finance, 2015. http://dx.doi.org/10.1016/j.jbankfin.2015.09.005.
[37] Maiz C S, Miguez J, Djuric P M. Particle filtering in the presence of outliers[C]//IEEE/SP 15th Workshop on Statistical Signal Processing, IEEE, 2009:33-36.
[38] Madhavan A, Smidt S. A Bayesian model of intraday specialist pricing[J]. Journal of Financial Economics, 1991, 30(1):99-134.
[39] Hasbrouck J. The summary informativeness of stock trades:An econometric analysis[J]. Review of Financial Studies, 1991, 4(3):571-595.
[40] Foster F D, Viswanathan S. Variations in trading volume, return volatility and trading costs:Evidence on recent price formation models[J]. The Journal of Finance, 1993, 48(1):187-211.
[41] Parlour C A. Price dynamics in limit order markets[J]. Review of Financial Studies, 1998, 11(4):789-816.
[42] Lahaye J, Laurent S, Neely C J. Jumps, cojumps and macro announcements[J]. Journal of Applied Econometrics, 2011, 26(6):893-921.
[43] Gilder D, Shackleton M B, Taylor S J. Cojumps in stock prices:Empirical evidence[J]. Journal of Banking and Finance, 2014, 40:443-459.

基金

国家自然科学基金(71271223,70971145);教育部新世纪优秀人才支持计划(NCET-13-1054)
PDF(2229 KB)

456

Accesses

0

Citation

Detail

段落导航
相关文章

/