基于均匀自组织映射遗传算法的梯级水库优化调度

王丽萍, 王渤权, 李传刚, 刘明浩, 张验科

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (4) : 1072-1079.

PDF(908 KB)
PDF(908 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (4) : 1072-1079. DOI: 10.12011/1000-6788(2017)04-1072-08
论文

基于均匀自组织映射遗传算法的梯级水库优化调度

    王丽萍, 王渤权, 李传刚, 刘明浩, 张验科
作者信息 +

Optimization operation of cascade reservoirs by uniform self-organizing map-genetic algorithm

    WANG Liping, WANG Boquan, LI Chuangang, LIU Minghao, ZHANG Yanke
Author information +
文章历史 +

摘要

针对遗传算法中初始解分布不均以及易早熟等问题,采用均匀设计方法来生成均匀分布的初始解以及自组织映射算法通过高低维空间映射来改变个体基因从而增强局部搜索能力,提出了均匀自组织映射遗传算法,弥补了传统遗传算法中初始解的生成过于随机以及进化过程中易陷入局部解的不足,并将此改进算法在梯级水库的长期优化调度中进行了应用. 通过实例计算表明,与遗传算法以及标准粒子群算法相比,此方法拥有更好的全局寻优能力,与动态规划算法结果相近,并且有着较快的计算速度,从而验证了此方法用于处理梯级水库的长期优化调度问题的可行性与合理性.

Abstract

In order to overcome the problems of non-uniform initial solution and premature of genetic algorithm, the paper used uniform design to get the uniform initial solution and used self-organizing map-genetic algorithm to enhance the local search ability by high and low dimensional space mapping to change individual genes from low dimensional space to high dimension space. Uniform self-organizing map-genetic algorithm is proposed to make up the problems of non-uniform initial solution and falling into the local solution. The algorithm was applied to the long-term optimal operation of cascade reservoirs, and the results show that the algorithm has better ability to get global optimization compared with genetic algorithm and standard particle swarm algorithm. What's more, its calculation speed is more faster compared with dynamic planning and the solutions are similar. The results confirm the algorithm in the long-term optimal scheduling problem for cascade reservoirs is feasible and rational.

关键词

梯级水库 / 长期优化调度 / 遗传算法 / 均匀设计 / 自组织映射

Key words

cascade reservoirs / long-term optimal scheduling / genetic algorithm / uniform design / self-organizing map

引用本文

导出引用
王丽萍 , 王渤权 , 李传刚 , 刘明浩 , 张验科. 基于均匀自组织映射遗传算法的梯级水库优化调度. 系统工程理论与实践, 2017, 37(4): 1072-1079 https://doi.org/10.12011/1000-6788(2017)04-1072-08
WANG Liping , WANG Boquan , LI Chuangang , LIU Minghao , ZHANG Yanke. Optimization operation of cascade reservoirs by uniform self-organizing map-genetic algorithm. Systems Engineering - Theory & Practice, 2017, 37(4): 1072-1079 https://doi.org/10.12011/1000-6788(2017)04-1072-08
中图分类号: TV697   

参考文献

[1] 宋萌勃, 岳延兵, 陈吉琴, 等. 水库调度与管理[M].郑州: 黄河水利出版社, 2013.Song M B, Yue Y B, Chen J Q, et al. The reservoir scheduling and management[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2013.
[2] 王丽萍,孙平,蒋志强,等. 基于正态云变异蛙跳算法的梯级水电站短期优化调度[J]. 水力发电学报, 2014, 6: 61-67. Wang L P, Sun P, Jiang Z Q, et al. Optimization of short-term operation of cascade hydropower stations using normal cloud mutation shuffled frog leaping algorithm[J]. Journal of Hydroelectric Engineering, 2014, 6: 61-67.
[3] 李辉. 改进微粒群算法在水电站优化调度中的应用[D].天津:天津大学, 2005.Li H. Application of improved particle swarm optimization in the optimal operation of hydropower stations[D]. Tianjin: Tianjin University, 2005.
[4] 吴松. 改进粒子群算法在并联水库群联合防洪优化调度中的应用[D].南京:河海大学, 2007.Wu S. The application of the improvement particle swarm optimization in the optimal operation of flood control multi-reservoir in parallel[D]. Nanjing: Hohai University, 2007.
[5] 王丽萍,孙平,蒋志强,等. 基于并行云变异蛙跳算法的梯级水库优化调度研究[J]. 系统工程理论与实践, 2015, 35(3): 790-798.Wang L P, Sun P, Jiang Z Q, et al. Study on cascade reservoirs optimal operation based on parallel normal cloud mutation shuffled frog leaping algorithm[J]. Systems Engineering——Theory & Practice, 2015, 35(3): 790-798.
[6] 纪昌明,李继伟,张新明,等. 基于免疫蛙跳算法的梯级水库群优化调度[J]. 系统工程理论与实践, 2013, 33(8): 2125-2132.Ji C M, Li J W, Zhang X M, et al. Optimal operation of cascade reservoirs based on immune-shuffled frog leaping algorithm[J]. Systems Engineering——Theory & Practice, 2013, 33(8): 2125-2132.
[7] 喻杉. 基于改进蚁群算法的梯级水库群优化调度研究[D].北京:华北电力大学, 2012.Yu S. The optimal operation research of cascade reservoirs based on improved ant colony optimization[D]. Beijing: North China Electric Power University, 2012.
[8] 黄锋,王丽萍,向腾飞,等. 基于混沌人工鱼群算法的水库发电优化调度研究[J]. 中国农村水利水电, 2014, 10: 149-153.Huang F, Wang L P, Xiang T F, et al. Research on reservoir generation optimization based on chaos artificial fish-school algorithm[J]. China Rural Water and Hydropower, 2014, 10: 149-153.
[9] 马永杰,云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 4: 1201-1206.Ma Y J, Yun W X. Research progress of genetic algorithm[J]. Computer Application Research, 2012, 4: 1201-1206.
[10] 刘永才. 均匀设计及其应用[J]. 战术导弹技术, 2002, 1: 58-61.Liu Y C. Uniform design and its application[J]. Tactical Missile Technology, 2002, 1: 58-61.
[11] 朱建凯. 基于流形学习的多目标分布估计算法研究[D].武汉:中国地质大学, 2011.Zhu J K. A manifold learning-based multi-objective estimation of distribution algorithm[D]. Wuhan: China University of Geosciences, 2011.
[12] Murat A, Novruz A. Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms[J]. Expert Systems With Applications, 2011, 38(3): 1313-1320.
[13] 张忠波,张双虎,蒋云钟,等. 改进的遗传算法在水库调度中的应用[J]. 人民黄河, 2012, 8: 54-56.Zhang Z B, Zhang S H, Jiang Y Z, et al. Application of improved genetic algorithm in reservoir optimal operation[J]. Yellow River, 2012, 8: 54-56.
[14] 陈立华,梅亚东,麻荣永. 并行遗传算法在雅砻江梯级水库群优化调度中的应用[J]. 水力发电学报, 2010, 6: 66-70.Chen L H, Mei Y D, Ma R Y. Parallel genetic algorithm and its application to optimal operation of the Yalong river cascade reservoirs[J]. Journal of Hydroelectric Engineering, 2010, 6: 66-70.
[15] 彭勇刚,罗小平,韦巍. 一种新的模糊自适应模拟退火遗传算法[J]. 控制与决策, 2009, 6: 843-848.Peng Y G, Luo X P, Wei W. New fuzzy adaptive simulated annealing genetic algorithm[J]. Control and Decision, 2009, 6: 843-848.
[16] Tsoulos I G. Solving constrained optimization problems using a novel genetic algorithm[J]. Embryologia, 1978, 20(20): 317-327.
[17] Ling S H, Leung F H F. An improved genetic algorithm with average-bound crossover and wavelet mutation operations[J]. Soft Computing, 2007, 11(1): 7-31.
[18] 方开泰. 均匀设计[J]. 战术导弹技术, 1994, 2: 56-69.Fang K T. Uniform design[J]. Tactical Missile Technology, 1994, 2: 56-69.
[19] 张双虎,黄强,吴洪寿,等. 水电站水库优化调度的改进粒子群算法[J]. 水力发电学报, 2007, 1: 1-5.Zhang S H, Huang Q, Wu H S, et al. A modified particle swarm optimizer for optimal operation of hydropower station[J]. Journal of Hydroelectric Engineering, 2007, 1: 1-5.
PDF(908 KB)

480

Accesses

0

Citation

Detail

段落导航
相关文章

/