中图分类号:
TV697
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宋萌勃, 岳延兵, 陈吉琴, 等. 水库调度与管理[M].郑州: 黄河水利出版社, 2013.Song M B, Yue Y B, Chen J Q, et al. The reservoir scheduling and management[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2013.
[2] 王丽萍,孙平,蒋志强,等. 基于正态云变异蛙跳算法的梯级水电站短期优化调度[J]. 水力发电学报, 2014, 6: 61-67. Wang L P, Sun P, Jiang Z Q, et al. Optimization of short-term operation of cascade hydropower stations using normal cloud mutation shuffled frog leaping algorithm[J]. Journal of Hydroelectric Engineering, 2014, 6: 61-67.
[3] 李辉. 改进微粒群算法在水电站优化调度中的应用[D].天津:天津大学, 2005.Li H. Application of improved particle swarm optimization in the optimal operation of hydropower stations[D]. Tianjin: Tianjin University, 2005.
[4] 吴松. 改进粒子群算法在并联水库群联合防洪优化调度中的应用[D].南京:河海大学, 2007.Wu S. The application of the improvement particle swarm optimization in the optimal operation of flood control multi-reservoir in parallel[D]. Nanjing: Hohai University, 2007.
[5] 王丽萍,孙平,蒋志强,等. 基于并行云变异蛙跳算法的梯级水库优化调度研究[J]. 系统工程理论与实践, 2015, 35(3): 790-798.Wang L P, Sun P, Jiang Z Q, et al. Study on cascade reservoirs optimal operation based on parallel normal cloud mutation shuffled frog leaping algorithm[J]. Systems Engineering——Theory & Practice, 2015, 35(3): 790-798.
[6] 纪昌明,李继伟,张新明,等. 基于免疫蛙跳算法的梯级水库群优化调度[J]. 系统工程理论与实践, 2013, 33(8): 2125-2132.Ji C M, Li J W, Zhang X M, et al. Optimal operation of cascade reservoirs based on immune-shuffled frog leaping algorithm[J]. Systems Engineering——Theory & Practice, 2013, 33(8): 2125-2132.
[7] 喻杉. 基于改进蚁群算法的梯级水库群优化调度研究[D].北京:华北电力大学, 2012.Yu S. The optimal operation research of cascade reservoirs based on improved ant colony optimization[D]. Beijing: North China Electric Power University, 2012.
[8] 黄锋,王丽萍,向腾飞,等. 基于混沌人工鱼群算法的水库发电优化调度研究[J]. 中国农村水利水电, 2014, 10: 149-153.Huang F, Wang L P, Xiang T F, et al. Research on reservoir generation optimization based on chaos artificial fish-school algorithm[J]. China Rural Water and Hydropower, 2014, 10: 149-153.
[9] 马永杰,云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 4: 1201-1206.Ma Y J, Yun W X. Research progress of genetic algorithm[J]. Computer Application Research, 2012, 4: 1201-1206.
[10] 刘永才. 均匀设计及其应用[J]. 战术导弹技术, 2002, 1: 58-61.Liu Y C. Uniform design and its application[J]. Tactical Missile Technology, 2002, 1: 58-61.
[11] 朱建凯. 基于流形学习的多目标分布估计算法研究[D].武汉:中国地质大学, 2011.Zhu J K. A manifold learning-based multi-objective estimation of distribution algorithm[D]. Wuhan: China University of Geosciences, 2011.
[12] Murat A, Novruz A. Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms[J]. Expert Systems With Applications, 2011, 38(3): 1313-1320.
[13] 张忠波,张双虎,蒋云钟,等. 改进的遗传算法在水库调度中的应用[J]. 人民黄河, 2012, 8: 54-56.Zhang Z B, Zhang S H, Jiang Y Z, et al. Application of improved genetic algorithm in reservoir optimal operation[J]. Yellow River, 2012, 8: 54-56.
[14] 陈立华,梅亚东,麻荣永. 并行遗传算法在雅砻江梯级水库群优化调度中的应用[J]. 水力发电学报, 2010, 6: 66-70.Chen L H, Mei Y D, Ma R Y. Parallel genetic algorithm and its application to optimal operation of the Yalong river cascade reservoirs[J]. Journal of Hydroelectric Engineering, 2010, 6: 66-70.
[15] 彭勇刚,罗小平,韦巍. 一种新的模糊自适应模拟退火遗传算法[J]. 控制与决策, 2009, 6: 843-848.Peng Y G, Luo X P, Wei W. New fuzzy adaptive simulated annealing genetic algorithm[J]. Control and Decision, 2009, 6: 843-848.
[16] Tsoulos I G. Solving constrained optimization problems using a novel genetic algorithm[J]. Embryologia, 1978, 20(20): 317-327.
[17] Ling S H, Leung F H F. An improved genetic algorithm with average-bound crossover and wavelet mutation operations[J]. Soft Computing, 2007, 11(1): 7-31.
[18] 方开泰. 均匀设计[J]. 战术导弹技术, 1994, 2: 56-69.Fang K T. Uniform design[J]. Tactical Missile Technology, 1994, 2: 56-69.
[19] 张双虎,黄强,吴洪寿,等. 水电站水库优化调度的改进粒子群算法[J]. 水力发电学报, 2007, 1: 1-5.Zhang S H, Huang Q, Wu H S, et al. A modified particle swarm optimizer for optimal operation of hydropower station[J]. Journal of Hydroelectric Engineering, 2007, 1: 1-5.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}