基于机制转换特征与随机波动率Libor市场模型(此后记为SRSV-LMM),利用傅里叶分析和费曼-卡茨定理,对CMS价差期权(CMSSO)价格的理论计算问题进行深入分析与探讨.首先,针对CMS价差期权的内涵特征及其价值组成,提出该类产品定价的理论计算框架;其次,基于标的Libor利率与互换利率的随机与阶段变化特征,建立具有随机波动率和机制转换性质的Libor市场模型以及互换利率市场模型(此后记为SRSV-SMM),并运用Black逆推公式和自适应马尔可夫链蒙特卡罗模拟方法(此后记为MCMC)对该模型进行有效参数市场校准与模拟估计;最后,基于SRSV-LMM和SRSV-SMM模型假设,利用费曼-卡茨定理和傅里叶逆变换方法得出CMS价差期权的理论计算公式,并通过实例进行实证计算与比较分析.研究结论认为,对远期Libor利率与互换利率生成路径的蒙特卡罗模拟来说,SRSV-LMM、SRSV-SMM具有更优越拟合效果;与蒙特卡罗模拟方法比较,本文提出CMS价差期权理论定价公式在价格计算时间与实际数据利差上体现出更好的实证效果.
Abstract
Based on LMM with switching regime and stochastic volatility, theoretical methods on CMSSO are deeply analysized and explored by mean of Fourier analysis and Feynman-Katz theorem. Firstly, according to the connotation feature and value composition of CMSSO, we put forward a theoretical computational framework for pricing this product. Secondly, basing on the random and switching jump features of Libor and Swap rates, we set up LMM/SMM with stochastic volatility and switching regime, and make an effective calibration and estimation for models parameters by using Black-backstepping and adaptive MCMC. Lastly, on the basic of SRSV-LMM and SRSV-SMM, the theoretical computational formulas are given, and their empirical computation and comparative analysis are made by means of Fourier analysis and Feynman-Katz theorem. The research conclusion is:according to the Monte Carlo simulation result of forward Libor and Swap rates paths, SRSV-LMM、SRSV-SMM have less simulation errors and better simulation effect. Further, compared with Monte Carlo method, our methods reflect better empirical result basing on computation time and simulation accuracy.
关键词
机制转换 /
随机波动率 /
Libor市场模型 /
CMS价差期权 /
傅里叶分析
{{custom_keyword}} /
Key words
switching regime /
stochastic volatility /
Libor market models /
CMS spread option /
Fourier analysis
{{custom_keyword}} /
中图分类号:
F830.91
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Andersen L, Andreasen J. Volatility skews and extensions of the LIBOR market model[J]. Applied Mathematical Finance, 2000, 7(1):1-32.
[2] Andersen L, Brotherton-Ratcliffe R. Extended LIBOR market models with stochastic volatility[R]. SSRN:http://ssrn.com/abstract=294853,2001.
[3] Wu L, Zhang F. Libor market model with stochastic volatility[J]. Journal of Industrial and Management Optimization, 2006, 2(2):199-227.
[4] Belomestny D, Mathew S, Schoenmakers J. Multiple stochastic volatility extension of the LIBOR market model and its implementation[J]. Monte Carlo Methods and Applications, 2009, 15(4):285-310.
[5] Belomestny D, Schoenmakers J. A jump-diffusion Libor model and its robust calibration[J]. Quantitative Finance, 2011, 11(4):529-546.
[6] Ladkau M, Schoenmakers J, Zhang J. Libor model with expiry-wise stochastic volatility and displacement[J]. International Journal of Portfolio Analysis and Management, 2013, 1(3):224-249.
[7] 马俊海, 张强. 随机波动率LIBOR模型及其结构性存款定价:理论估计与蒙特卡罗模拟[J]. 系统工程理论与实践, 2013, 33(4):817-828. Ma J H, Zhang Q. Stochastic volatility LIBOR market model and its structured deposits pricing:Theoretic estimation and Monte Carlo simulation[J]. Systems Engineering-Theory & Practice, 2013, 33(4):817-828.
[8] Leippold M, Strømberg J. Time-changed Lévy LIBOR market model:Pricing and joint estimation of the cap surface and swaption cube[J]. Journal of Financial Economics, 2014, 111(1):224-250.
[9] Steinruecke L, Zagst R, Swishchuk A. The Markov-switching jump diffusion Libor market model[J]. Quantitative Finance, 2015, 15(3):455-476.
[10] Piterbarg V. A stochastic volatility forward Libor model with a term structure of volatility smiles[R]. SSRN 472061, 2003.
[11] Mercurio F, Pallavicini A, Banca I M I, et al. Mixing Gaussian models to price CMS derivatives[R]. https://www.researchgate.net/publication/228290132, 2005.
[12] 廖容晨. LIBOR市场模型下可赎回CMS价差区间型商品之评价与分析[D]. 台中:"国立中兴大学", 2007. Liao R C. Evaluation and analysis of the CMS spread Based on LIBOR market model[D]. Taizhong:"National Chung Xing University", 2007.
[13] Elliott R J, Kuen Siu T, Chan L. Pricing volatility swaps under Heston's stochastic volatility model with regime switching[J]. Applied Mathematical Finance, 2007, 14(1):41-62.
[14] Antonov A, Arneguy M. Analytical formulas for pricing cms products in the Libor market model with the stochastic volatility[R]. http://ssrn.com/abstract=1352606, 2009.
[15] Belomestny D, Kolodko A, Schoenmakers J. Pricing CMS spread options in a LIBOR market model[J]. International Journal of Theoretical and Applied Finance, 2010, 13(1):45-62.
[16] 杨绣碧. 三因子BGM模型下汇率连动固定期利率交换商品之评价[D]. 台北:"国立政治大学", 2010. Yang X B. Evaluation on CMS linked-exchange rate based on three factor BGM model[D]. Taipei:"National Political University", 2010.
[17] Wu T P, Chen S N. Valuation of CMS spread options with nonzero strike rates in the LIBOR market model[J]. The Journal of Derivatives, 2011, 19(1):41-55.
[18] Lutz M, Kiesel R. Efficient pricing of constant maturity swap spread options in a stochastic volatility LIBOR market model[J]. Journal of Computational Finance, 2011, 14(4):37-72.
[19] 陈曦. 基于Numéraire变换理论和SMM模型的奇异CMS利率衍生产品定价[D].济南:山东大学, 2012. Chen X. Pricing exotic CMS rate derivatives based on Numéraire transformation theory and SMM[D]. Ji'nan:Shandong University, 2012.
[20] 蔡昱宏. 结构型金融商品之评价与分析——以多资产股权连动债券与CMS利差连动债券为例[D]. 桃园:"国立中央大学", 2013. Cai Y H. Evaluation and analysis of structured financial products-An example on linked-multi-assets bonds and CMS rate derivatives[D]. Taoyuan:"National Central University", 2013.
[21] Lutz M. Extracting correlations from the market:New correlation parameterizations and the calibration of a stochastic volatility LMM to CMS spread options[R]. SSRN 1620356, 2010.
[22] 孙斌. 随机波动率机制转换Libor市场模型及其CMS价差期权定价研究[D]. 杭州:浙江财经大学, 2015. Sun B. Research on Libor market models with stochastic volatility and regime switching and CMSSO pricing[D]. Hangzhou:Zhejiang University of Finance and Economics, 2015.
[23] Hurd T R, Zhou Z. A Fourier transform method for spread option pricing[J]. SIAM Journal on Financial Mathematics, 2010, 1(1):142-157.
[24] Joshi M, Yang C. Fast and accurate pricing and hedging of long-dated CMS spread options[J]. International Journal of Theoretical and Applied Finance, 2010, 13(6):839-865.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71271190);教育部人文社会科学研究项目(15YJA630037)
{{custom_fund}}