核稀疏概念编码算法及在图像表示中的应用

舒振球, 赵春霞

系统工程理论与实践 ›› 2016, Vol. 36 ›› Issue (5) : 1331-1339.

PDF(836 KB)
PDF(836 KB)
系统工程理论与实践 ›› 2016, Vol. 36 ›› Issue (5) : 1331-1339. DOI: 10.12011/1000-6788(2016)05-1331-09
论文

核稀疏概念编码算法及在图像表示中的应用

    舒振球1, 赵春霞2
作者信息 +

Kernel sparse concept coding algorithm and its application for image representation

    SHU Zhenqiu1, ZHAO Chunxia2
Author information +
文章历史 +

摘要

稀疏编码算法是一种常用的图像数据表示方法.为了处理高度非线性分布的数据,文中提出了一种核稀疏概念编码算法,并应用于图像表示.该算法首先对邻域图进行谱分析,提取数据的几何流形结构信息;然后将原始特征空间数据映射到高维特征空间中,利用谱回归在高维特征空间中来计算基向量;最后在高维特征空间中对每个样本逐个进行表示.文中算法不仅能有效地处理非线性结构数据,而且只需求解一个稀疏特征值问题和两个回归问题,计算简单有效.在Yale、ORL和PIE图像库的聚类实验表明,文中算法的准确率和归一化互信息均优于其它几种对比算法.

Abstract

Sparse coding algorithm is a popular data representation method. In order to deal with the high nonlinear data, in this paper, a kernel sparse concept coding (KSCC) algorithm is proposed for image representation. Our algorithm performs spectral analysis on nearest neighbor graph and captures the geometric manifold structure of the data. Then the data in the origin feature space is mapped into the high-dimensional feature space and the basis vector in high-dimensional space is obtained using spectral regression. Finally, the samples are individually represented in high-dimensional feature space. Therefore, the proposed algorithm not only effectively handles the nonlinear structure data, but also needs to solve a sparse eigen-problem and two regression problems, which is very simple and effective. The experiments on Yale、ORL and PIE image datasets demonstrate that the accuracy and normalized mutual information of our proposed algorithm are superior to other comparison algorithms.

关键词

基向量 / 数据表示 / / 非线性 / 稀疏编码 / 谱回归

Key words

basis vectors / data representation / kernel / nonlinear / sparse coding / spectral regression

引用本文

导出引用
舒振球 , 赵春霞. 核稀疏概念编码算法及在图像表示中的应用. 系统工程理论与实践, 2016, 36(5): 1331-1339 https://doi.org/10.12011/1000-6788(2016)05-1331-09
SHU Zhenqiu , ZHAO Chunxia. Kernel sparse concept coding algorithm and its application for image representation. Systems Engineering - Theory & Practice, 2016, 36(5): 1331-1339 https://doi.org/10.12011/1000-6788(2016)05-1331-09
中图分类号: TP391   

参考文献

[1] Wright J, Yang M, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227.
[2] Gao S, Tsang Ivor W H, Chia L T. Sparse representation with kernels[J]. IEEE Transactions on Image Processing, 2013, 22(2):423-434.
[3] Yang M, Zhang L.Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary[C]//Proc of the 11th European Conference on Computer Vision (CVPR), 2010:448-461.
[4] Yu K, Zhang T, Gong Y. Nonlinear learning using local coordinate coding[C]//Proc of Advances in Neural Information Processing Systems, Vancouver, Canada, 2009:2223-2231.
[5] Naseem I, Togneri R, Bennamoun M. Linear regression for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11):2106-2112.
[6] Elhamifar E, Vidal R. Sparse subspace clustering[C]//Proc of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2009:2790-2797.
[7] Peng X, Zhang L, Yi Z. Scalable sparse subspace clustering[C]//Proc of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2013:430-437.
[8] 徐雅斌, 李卓, 吕非非, 等.基于频繁词集聚类的微博新话题快速发现[J]. 系统工程理论与实践, 2014, 34(s1):276-282. Xu Y B, Li Z, Lü F F, et al. Rapid discovery of new topics in micrologys based on frequent words sets clustering[J]. Systems Engineering-Theory & Practice, 2014, 34(s1):276-282.
[9] Jiang Z, Lin Z, Davis L S. Label consistent K-SVD:Learning a discriminative dictionary for recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2651-2664.
[10] 邓晓懿, 金淳, 韩庆平, 等. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11):2945-2953. Deng X Y, Jin C, Han Q P, et al. Improved collaborative filtering model based on context clustering and user ranking[J]. Systems Engineering-Theory & Practice, 2013, 33(11):2945-2953.
[11] Cai D, Bao H J, He X. Sparse concept coding for visual analysis[C]//Proc of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011:2905-2910.
[12] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proc of Advances in Neural Information Processing Systems, British Columbia, Canada, 2001, 14:585-591.
[13] Zhang H, Zha Z, Yang Y, et al. Robust (semi) nonnegative graph embedding[J]. IEEE Transactions on Image Processing, 2014, 23(7):2996-3012.
[14] Hettiarachchi R, Peters J. Multi-manifold LLE learning in pattern recognition[J]. Pattern Recognition, 2015, 48(9):2947-2960.
[15] Liu Y, Wang Q, Jiang Y, et al. Supervised locality discriminant manifold learning for head pose estimation[J]. Knowledge-Based Systems, 2014, 66:126-135.
[16] Yan S, Xu D, Zhang B, et al. Graph embedding and extensions:A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51.
[17] Cai D, He X, Han J. Speed up kernel discriminant analysis[J]. The VLDB Journal, 2011, 20(1):21-33.
[18] Shu Z, Zhao C, Huang P. Constrained sparse concept coding algorithm with application to image representation[J]. KSII Transactions on Internet and Information Systems, 2014, 8(9):3211-3230.
[19] Li P, Bu J, Yang Y, et al. Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation[J]. Expert Systems with Applications, 2014, 41(4):1283-1293.
[20] Zeng K, Yu J, Li C, et al. Image clustering by hyper-graph regularized non-negative matrix factorization[J]. Neurocomputing, 2014, 138:209-217.
[21] Shu Z, Zhao C, Huang P. Local regularization concept factorization and its semi-supervised extension for image representation[J]. Neurocomputing, 2015, 152(22):1-12.
[22] Huang J, Nie F, Huang H, et al. Robust manifold nonnegative matrix factorization[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 8(3):1-20.
[23] Liu H, Yang Z, Yang J, et al. Local coordinate concept factorization for image representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6):1071-1082.

基金

国家自然科学基金(61472166,61503195,61302124,11274091)
PDF(836 KB)

322

Accesses

0

Citation

Detail

段落导航
相关文章

/