应急响应目标的可满足性评估对应急响应的实施具有重要指导作用,针对应急响应目标可满足性存在不确定性的问题,提出一种在"情景-应对"模式下能够对目标可满足性进行评估的方法.该方法在证据理论框架下,首先基于信度结构构建目标可满足性表示模型,在表示模型的基础上,文章结合情景,采用信度规则推理出叶子目标的可满足性.然后提出改进的OWA算子用以计算目标分解权重,进而采用证据融合算法评估高层目标的可满足性,评估结果可为决策者提供理论依据.最后,采用算例验证了方法的有效性,结果表明,该方法能够兼顾目标间的作用关系,其评估结果能较好地与人的主观直觉判断相一致.
Abstract
The assessment of goals satisfiability of emergency response is important for the implement of emergency response. An assessment methodology is proposed to solve the problem that the goals satisfiability is difficult to assess because of uncertainty under the pattern of scenario-response. On the ground of DS evidence theory framework, belief function theory is used to build the goals satisfiability representation model. Basis on this, belief rules are used to reasoning the satisfiability of leaf goals based on scenarios. With different scenarios, different values of leaf goals could be obtained. And then a method for improving traditional OWA operators is put forward in order to compute the weights. Then evidence combination algorithm is used to assess the satisfiability of high-level goals according to the satisfiability of leaf goals, and the conclusion of assessment can provide theoretic foundation for decision makers. Finally, the result of example indicates that the interactive effects of goals satisfiability could be paid attention to and the assessment result of this method is well consistent with the person's subjective intuition.
关键词
应急响应 /
目标 /
情景 /
评估方法
{{custom_keyword}} /
Key words
emergency response /
goal /
scenario /
assessment methods
{{custom_keyword}} /
中图分类号:
C934
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王守信, 张莉, 王帅. 一种目标可满足性定性、定量表示与推理方法[J]. 软件学报, 2011, 22(4):593-608.Wang S X, Zhang L, Wang S. Qualitative and quantitative representing and reasoning for goal satisfiability[J]. Journal of Software, 2011, 22(4):593-608.
[2] Chen S M, Lee L W. Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on interval type-2 fuzzy sets[J]. Expert Systems with Applications, 2011, 38:9947-9957.
[3] Castillo O, Melin P. A review on interval type-2 fuzzy logic applications in intelligent control[J]. Information Sciences, 2014, 279(20):615-631.
[4] Primiero G, Taddeo M. A modal type theory for formalizing trusted[J]. Journal of Applied Logic, 2012, 10(1):92-114.
[5] Menzies T, Kocaguneli E, Minku L, et al. The importance of goals in model-based reasoning[J]. Sharing Data and Models in Software Engineering, 2015, 23:305-320.
[6] Giorgini P, Mylopoulos J, Sebastiani R. Goal-oriented requirements analysis and reasoning in the Tropos methodology[J]. Engineering Application of Artificial Intelligence, 2005, 18(2):159-171.
[7] Giorgini P, Mylopoulos J, Nicchiarelli E, et al. Formal reasoning techniques for goal models[J]. Journal on Data Semantics, 2003, 1(1):1-20.
[8] Aiello M, Giorgini P. Applying the Tropos methodology for analyzing web services requirements and reasoning about qualities of services[J]. CEPIS Upgrade the European Journal of the Informatics Professional, 2004, 5(4):20-26.
[9] 曾黄麟, 曾谦. 基于不确定性问题研究方法评价系统参数的重要性[J]. 系统工程理论与实践, 2000, 20(11):94-98.Zeng H L, Zeng Q. Studies on the significance of system attributes with the information uncertainty methods[J]. Systems Engineering-Theory & Practice, 2000, 20(11):94-98.
[10] 张海龙, 李雄飞, 董立岩. 应急预案评估方法研究[J]. 中国安全科学学报, 2009, 19(7):142-148.Zhang H L, Li X F, Dong L Y. Fuzzy evaluation model of emergency plans[J]. China Safety Science Journal, 2009, 19(7):142-148.
[11] 姜江, 李璇, 刑立宁,等. 基于模糊证据推理的系统风险分析与评价[J]. 系统工程理论与实践, 2013, 33(2):529-537.Jiang J, Li X, Xing L N, et al. System risk analysis and evaluation approach based on fuzzy evidential reasoning[J]. Systems Engineering-Theory & Practice, 2013, 33(2):529-537.
[12] 董玉才, 张玲, 张仕新,等. 基于投影寻踪模型的装备保障性目标评估[J]. 数学的实践与认识, 2014, 44(16):160-165.Dong Y C, Zhang L, Zhang S X, et al. Supportability target value evaluation of materiel based on projection pursuit model[J]. Mathematics in Practice and Theory, 2014, 44(16):160-165.
[13] Josang A, Deniel M, Vannoorenberghe P. Strategies for combining conflicting dogmatic beliefs[C]//Proceedings of the Sixth International Conference of Information Fusion, 2003:1133-1140.
[14] Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38:325-339.
[15] Shafer G. A mathematical theory of evidence[M]. Princeton University Press, 1976.
[16] 司小胜, 胡昌华, 周志杰. 基于证据推理的故障预报模型[J]. 中国科学:信息科学, 2010, 40(7):954-967.Si X S, Hu C H, Zhou Z J. A new prediction model based on evidential reasoning[J]. Scientia Sinica (Informationis), 2010, 40(7):954-967.
[17] Dymova L, Sevastjanov P. A new approach to the rule-base evidential reasoning in the intuitionistic fuzzy setting[J]. Knowledge-Based Systems, 2014, 61:109-117.
[18] 曲毅, 仲秋雁, 马骁霏,等. 基于情景的突发事件演变概率规则推理方法[J]. 系统工程学报, 2014, 29(4):571-578.Qu Y, Zhong Q Y, Ma X F, et al. The event evolution scenario-based reasoning method via probability rules[J]. Journal of Systems Engineering, 2014, 29(4):571-578.
[19] 代宝乾, 汪彤, 秦跃平. 城市灾害应急目标管理及动态管理模型研究[J]. 中国管理科学, 2007, 15:695-699.Dai B Q, Wang T, Qin Y P. Study on city disaster emergency objective management and grey dynamic model[J]. Chinese Journal of Management Science, 2007, 15:695-699.
[20] Si X S, Hu C H, Yang J B, et al. A new prediction model based on belief-rule-base for system's behavior predition[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(4):636-651.
[21] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking[J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(1):183-190.
[22] Lizasoain I, Moreno C. OWA operators defined on complete lattices[J]. Fuzzy Sets and Systems, 2013, 224(1):36-52.
[23] Yang J B, Xu D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205:1-29.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重点资助项目(91024029);国家自然科学基金(71373034)
{{custom_fund}}