基于不完全维修的可修系统平均故障次数研究

崔铁军, 马云东

系统工程理论与实践 ›› 2016, Vol. 36 ›› Issue (1) : 184-188.

PDF(556 KB)
PDF(556 KB)
系统工程理论与实践 ›› 2016, Vol. 36 ›› Issue (1) : 184-188. DOI: 10.12011/1000-6788(2016)01-0184-05
论文

基于不完全维修的可修系统平均故障次数研究

    崔铁军1,2,3, 马云东3
作者信息 +

Research on the number of failures of repairable systems based on imperfect repair model

    CUI Tiejun1,2,3, MA Yundong3
Author information +
文章历史 +

摘要

为了研究可修系统在不完全维修状态下的故障发生次数, 使用广义更新模型(generalized renewal process, GRP)的思想建立的Kijima虚寿命模型来描述不完全维修模型, 使用极大似然参数估计得到了上述过程的相关参数, 使用Monte Carlo (MC)模拟得到了故障时间, 计算不同时间段的不完全维修时平均故障次数. 根据文献结合了一组零件故障服从两参数威布尔分布的数据, 进行了上述方法的模拟. 并将结果与相同数据的完全维修和一般维修得到的系统不同时间的平均故障次数进行比较, 模拟表明在7000h前可以使用不完全维修模型确定平均故障次数, 7000h后用不完全维修和一般维修平均故障次数曲线的平均值确定平均故障次数.

Abstract

In order to research the mean failure times of repairable systems in imperfect repair state, Kijima's virtual age model based on the generalized renewal process (GRP) is improved to describe imperfect repair model. The correlative parameters of the process are estimated with maximum likelihood estimation. First failure time and subsequent failures times are obtained by Monte Carlo (MC) simulation. The mean failure times of system is calculated in imperfect repair state and different time. The data follows the Weibull distribution and literatures are combined to simulate according to the model. The mean failure times from that imperfect repair model, perfect repair model and general repair model are compared in different respectively. The results show that before 7000h, the mean failure times of system is determined with imperfect repair model; after 7000h, the mean failure times of system is determined with the mean value of imperfect repair model and general repair model.

关键词

可靠性工程 / 广义更新模型 / Kijima虚寿命模型 / 不完全维修 / Monte Carlo模拟

Key words

reliability engineering / generalized renewal process (GRP) / Kijima's virtual age model / imperfect repair model / Monte Carlo (MC) simulation

引用本文

导出引用
崔铁军 , 马云东. 基于不完全维修的可修系统平均故障次数研究. 系统工程理论与实践, 2016, 36(1): 184-188 https://doi.org/10.12011/1000-6788(2016)01-0184-05
CUI Tiejun , MA Yundong. Research on the number of failures of repairable systems based on imperfect repair model. Systems Engineering - Theory & Practice, 2016, 36(1): 184-188 https://doi.org/10.12011/1000-6788(2016)01-0184-05
中图分类号: O213.2   

参考文献

[1] 曹晋华,程侃.可靠性数学引论[M].北京:科学出版社, 1986.Cao J H, Cheng K. Theory of reliability mathematics[M]. Beijing: Science Press, 1986.
[2] 程侃.寿命分布类与可靠性数学理论[M].北京:科学出版社, 1999. Cheng K. Kinds of life distribution and theory of reliability mathematics[M]. Beijing: Science Press, 1999.
[3] Barlow R E, Hunter L C. Optimum preventive maintenance policy[J]. Operations Research, 1960, 8: 90-100.
[4] Brown M, Proschan F. Imperfect repair[J]. Journal of Applied Probability, 1983, 20: 851-859.
[5] 陈相侄. 基于不完全维修的二维产品保证成本研究[D]. 杭州:杭州电子科技大学, 2010.Chen X Z. A study on the cost of two-dimensional product warranty based on imperfect repair[D]. Hangzhou: Hangzhou Dianzi University, 2010.
[6] 叶培钒. 不完全维修前提下基于状态维修策略最优化模型研究[D]. 北京: 清华大学, 2011.Ye P F. Research on condition-based maintenance policy optimization under imperfect maintenance[D]. Beijing: Tsinghua University, 2011.
[7] 王小林, 程志君, 郭波, 等. 基于冲击模型劣化系统的不完全维修决策[J]. 系统工程理论与实践, 2011, 31(12): 2380-2386.Wang X L, Cheng Z J, Guo B, et al. Imperfect maintenance deeision for a deteriorating system based on shock model[J]. Systems Engineering-Theory & Practiee, 2011, 31(12): 2380-2386.
[8] 葛恩顺, 李庆民, 黄傲林, 等. 不完全维修下的单部件系统视情维修及更换策略[J]. 系统工程与电子技术, 2012, 34(12): 2509-2513.Ge E S, Li Q M, Huang A L, et al. Condition-based maintenance and replacement policy for single-unit system under imperfect maintenance[J]. Systems Engineering and Electronics, 2012, 34(12): 2509-2513.
[9] 康建设,刘天斌,尤志锋. 基于故障率减少的不完全维修模型[J]. 数学的实践与认识, 2013, 43(22): 174-179. Kang J S, Liu T B, You Z F. Imperfect maintenance model based on the reduction of system's failure rate[J]. Mathematics in Practice and Theory, 2013, 43(22): 174-179.
[10] 刘天斌,尤志锋,吴波. 基于贝叶斯分析的不完全维修条件下可修系统的参数估计[J]. 数学的实践与认识, 2013, 43(21): 136-142.Liu T B, You Z F, Wu B. Parameter estimation for a repairable system under imperfect maintenance based on Bayesian analysis[J]. Mathematics in Practice and Theory, 2013, 43(21): 136-142.
[11] 崔铁军, 马云东. 基于泛函网络的周期来压预测方法研究[J]. 计算机科学, 2013, 40(6A): 242-246.Cui T J, Ma Y D. Prediction of periodic weighting based on optimized functional networks[J]. Computer Science, 2013, 40(6A): 242-246.
[12] 崔铁军, 马云东. 基于差异进化支持向量机的坑外土体沉降预测[J]. 中国安全科学学报, 2013, 23(1): 83-89.Cui T J, Ma Y D. Prediction of soil settlement outside pit based on DE and SVM[J]. China Safety Science Journal, 2013, 23(1): 83-89.
[13] 崔铁军, 马云东, 白润才. 基于 ANN 耦合遗传算法的爆破方案选择方法[J]. 中国安全科学学报, 2013, 23(2): 64-68.Cui T J, Ma Y D, Bai R C. Selection of blast scheme based on coupling of genetic algorithm and artificial neural network[J]. China Safety Science Journal, 2013, 23(2): 64-68.
[14] 崔铁军, 马云东. 多维空间故障树构建及应用研究[J]. 中国安全科学学报, 2013, 23(4): 32-37.Cui T J, Ma Y D. Research on multi-dimensional space fault tree construction and application[J]. China Safety Science Journal, 2013, 23(4): 32-37.
[15] Monika T, Rajiv N R, Nomesh B. Imperfect repair modeling using Kijima type generalized renewal process[J]. Reliability Engineering and System Safety, 2014, 124: 24-31.
[16] 陈凤腾, 左洪福, 倪现存. 基于广义更新过程的航空备件需求和应用[J]. 应用科学学报, 2007, 25(5): 526-530.Chen F T, Zuo H F, Ni X C. Demand and application of aero-spare parts based on generalized renewal process[J]. Journal of Applied Sciences, 2007, 25(5): 526-530.
[17] Kijima M, Sumita U. A useful generalization of renewal theory: Counting processes governed by non-negative Markovian increments[J]. Journal of Applied Probability, 1986, 23(1): 71-88.
[18] Dorado C, Hollander M, Sethuraman J. Nonparametric estimation for a general repair model[J]. Annals of Statistics, 1997, 25: 1140-1160.
[19] Krivtsov V. A Monte-Carlo approach to modelling and estimation of the generalized renewal process in repairable system reliability analysis[D]. City of College Park: University of Maryland, 2000.
[20] Yanez M, Joglar F, Modarres M. Generalized renewal process for analysis of repairable systems with limited failure experience[J]. Reliability Engineering & System Safety, 2002, 77: 167-180.
[21] Shirmohammadi H, Zhang Z G, Love E. A computational model for determining the optimal preventive maintenance policy with random breakdowns and imperfect repairs[J]. IEEE Transactions on Reliability, 2007, 56(2): 332-339.
[22] 蒋仁言,左明健.可靠性模型与应用[M].北京:机械工业出版社, 1999.
PDF(556 KB)

380

Accesses

0

Citation

Detail

段落导航
相关文章

/