本文首先对三维空间中面板数据的曲面几何特征进行了描述,并从“绝对数量”、“增长速度”、“几何相似性”和“空间绝对距离”等几个方面对曲面相似性指标进行了定义和构建,对模糊C均值聚类方法进行了优化.在此基础上,对2000-2010年中国31个省市专利产出活动的类型特征及其地域分异规律进行了探索.实证研究结果表明聚类效果良好,中国专利产出无论数量、绩效还是增速在总体上均呈上升趋势并存在空间异质性和自相关性.创新能力较强的省区虽集中在东部,但正在向中西部地区扩散.同时,创新总体上仍主要来自于政府推动尤其是研发资金投入,并且研发资源投入总量以及研发人员可支配资金的区域配置极不均衡.此外,财政拨款对于东、西部地区创新效率的作用也存在很大差异.因此,政府可根据区域研发能力和资源现状的不同,制定合理的区域科技发展战略与相关政策工具,从而挖掘区域创新动力,提升区域专利创新能力.
Abstract
This paper described the geometric structure of panel data's curved surface in 3D space, and established the synthesized similarity index for the curved surface through several aspects including the absolute magnitude, growth rate, geometric similarity and spatial absolute distance. The traditional fuzzy C-means clustering method was optimized through replacing the distance with the similarity index. On this basis, this paper explored the patent output's type characteristic and the rule of its territorial differentiation in China's 31 provinces (municipalities) during the years of 2000-2010. The empirical results showed that the clustering effect was good, and Chinese patent output showed an upward trend and spatial heterogeneity and autocorrelation generally at the same time no matter in the number, the performance or the growth rate. The innovation capability of more and more regions in central and western China were getting enhanced, although regions with higher innovation ability still concentrated in the eastern China. In addition, the boost of innovation mainly came from governments' promotion especially the R&D funding investment, however, the allocation of R&D resources and the personnel disposable funds were both extremely unbalanced among regions. Besides, there were distinct differences in the innovation efficiency between eastern and western regions for the financial allocation from government. The government should formulate a reasonable regional scientific and technological development strategy and sets of policy tools according to the regional R&D ability and resource endowment, so as to exploit the regional motivation power of innovation and to improve regional patent innovation capability.
关键词
专利产出 /
创新 /
面板数据 /
聚类分析 /
模糊C均值
{{custom_keyword}} /
Key words
patent product /
innovation /
panel data /
clustering analysis /
fuzzy C-mean method (FCM)
{{custom_keyword}} /
中图分类号:
F062.3
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Romer P M. Endogenous technological change[J]. Journal of Political Economy, 1990, 98(5): 71-102.
[2] 张继红, 吴玉鸣. 专利产出与区域经济增长的动态关联机制分析[J]. 工业工程与管理, 2007(2): 45-50.Zhang Jihong, Wu Yuming. A study on dynamic relation mechanism of patent output and economic growth[J]. Industrial Engineering and Management, 2007(2): 45-50.
[3] Rivette K G, Kline D. Discovering new value in intellectual property[J]. Harvard Business Review, 2000, 78(1): 54-66.
[4] 方曙, 张勐, 高利丹. 我国省(市)自治区专利产出与其GDP之间关系的实证研究[J].科研管理, 2006, 27(2): 40-44, 99. Fang Shu, Zhang Meng, Gao Lidan. The empirical study on the relationship between patents and GDP of provinces in China[J]. Science Research Management, 2006, 27(2): 40-44, 99.
[5] Huang K G. China's innovation landscape[J]. Science, 2010, 329(6): 632-633.
[6] Grossman G, Helpman E. Innovation and growth in the global economy[M]. Cambridge: MIT Press, 1991: 59-83.
[7] Encaoua D, Guellec D, Martinez C. Patent systems for encouraging innovation: Lessons from economic analysis[J]. Research Policy, 2006: 1423-1440.
[8] 刘华. 专利制度与经济增长: 理论与现实——对中国专利制度运行绩效的评估[J]. 中国软科学, 2002(10): 26-30. Liu Hua. Patent system and economic development: Theory & reality——Analysis on the dynamic utility of China's patent system[J]. China Soft Science, 2002(10): 26-30.
[9] 徐竹青. 专利、技术创新与经济增长:理论与实证[J]. 科技管理研究, 2004(5): 109-111. Xu Zhuqing. Patent, technological innovation and economic development: Theory & reality[J]. Science and Technology Management Research, 2004(5): 109-111.
[10] 池仁勇,唐根年.基于投入与绩效评价的区域技术创新效率研究[J]. 科研管理, 2004(5): 33-37.Chi Renyong, Tang Gennian. Study on efficiencies of regional technology innovation based on evaluation of inputs and performances[J]. Science Research Management, 2004(5): 33-37.
[11] 李美娟,陈国宏,肖细凤. 基于一致性组合评价的区域技术创新能力评价与比较分析[J]. 中国管理科学, 2009, 17(2): 131-139.Li Meijuan, Chen Guohong, Xiao Xifeng. Evaluation and comparative analysis on regional technology innovation capability based on consistency combination evaluation[J]. Chinese Journal of Management Science, 2009, 17(2): 131-139.
[12] 官建成,何颖.基于DEA方法的区域创新系统的评价[J]. 科学学研究, 2005(4): 31-33.Guan Jiancheng, He Ying. The performance of Chinese regional innovation system evaluation based on data envelopment analysis[J]. Studies in Science of Science, 2005(4): 31-33.
[13] 虞晓芬,李正卫,池仁勇. 我国区域技术创新效率:现状与原因[J].科学学研究, 2005(2): 27-30.Yu Xiaofen, Li Zhengwei, Chi Renyong. Technological innovation efficiency of different regions in China: Status quo and causes[J]. Studies in Science of Science, 2005(2): 27-30.
[14] 史修松,赵曙东,吴福象.中国区域创新效率及其空间差异研究[J]. 数量经济技术经济研究, 2009(3): 45-55.Shi Xiusong, Zhao Shudong, Wu Fuxiang. Analysis of regional innovation efficiency and spatial discrepancy in China[J]. The Journal of Quantitative & Technical Economics, 2009(3): 45-55.
[15] Griliches Z.Issues in assesing the contribution of research and development to productivity growth[J].Bell Journal of Economics, 1979, 10(1): 92-116.
[16] 吴玉鸣.空间计量经济模型在省域研发与创新中的应用研究[J]. 数量经济技术经济研究, 2006(5): 74-85.Wu Yuming. A spatial econometric model and its application to research & development and regional innovation[J]. The Journal of Quantitative & Technical Economics, 2006(5): 74-85.
[17] 张丽华,林善浪,汪达钦.我国技术创新活动的集聚效应分析[J], 数量经济技术经济研究, 2011(1): 3-18.Zhang Lihua, Lin Shanlang, Wang Daqin. A research on the agglomeration effect of China's technological innovation activities[J]. The Journal of Quantitative & Technical Economics, 2011(1): 3-18.
[18] 王锐淇. 我国区域技术创新能力空间相关性及扩散效应实证分析——基于1997-2008 空间面板数据[J]. 系统工程理论与实践, 2012, 32(11): 2419-2432.Wang Ruiqi. The empirical analysis about spatial correlation and diffusion impact in regional technological innovation——Based on 1997-2008's spatial panel data[J]. Systems Engineering——Theory & Practice, 2012, 32(11): 2419-2432.
[19] 马军杰,卢锐,刘春彦.中国专利产出绩效的空间计量经济分析[J].科研管理, 2013, 34(6): 104-105, 114.Ma Junjie, Lu Rui, Liu Chunyan. Spatial econometric analysis on Chinese patent product efficiency[J]. Science Research Management, 2013, 34(6): 104-105, 114.
[20] Bonzo D C, Hermosilla A Y. Clustering panel data via perturbed adaptive simulated annealing and genetic algorithms[J]. Advances in Complex Systems, 2002, 5(4): 339-360.
[21] 朱建平, 陈民恳. 面板数据的聚类分析及其应用[J]. 统计研究, 2007, 24(4): 11-14.Zhu Jianping, Chen Minken. The cluster analysis of panel data and its application[J]. Statistical Research, 2007, 24(4): 11-14.
[22] 郑兵云.多指标面板数据的聚类分析及其应用[J]. 数理统计与管理, 2008, 27(2): 265-270.Zheng Bingyun. The clustering analysis of multivariable panel data and its application[J]. Application of Statistics and Management, 2008, 27(2): 265-270.
[23] 肖泽磊,李帮义,刘思峰.基于多维面板数据的聚类方法探析及实证研究[J]. 数理统计与管理, 2009, 28(5): 831-838.Xiao Zelei, Li Bangyi, Liu Sifeng. The discussion on the clustering way based on the multi-dimensional panel data and empirical analysis[J]. Application of Statistics and Management, 2009, 28(5): 831-838.
[24] 李英果,何晓群.面板数据聚类方法及应用[J]. 统计研究, 2010, 27(9): 73-78.Li Yingguo, He Xiaoqun. The cluster analysis of panel data and its application[J]. Statistical Research, 2010, 27(9): 73-78.
[25] 任娟, 陈圻.基于形状特征的多指标面板数据聚类方法及其应用[J]. 统计与信息论坛, 2011, 26(10): 28-33.Ren Juan, Chen Qi. Clustering and its empirical study based on shape for multivariable panel data[J]. Statistics & Information Forum, 2011, 26(10): 28-33.
[26] 张可,刘思峰.灰色关联聚类在面板数据中的扩展及应用[J].系统工程理论与实践, 2010, 30(7): 1253-1259. Zhang Ke, Liu Sifeng. Extended clusters of grey incidences for panel data and its application[J]. Systems Engineering——Theory & Practice, 2010, 30(7): 1253-1259.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71103128);国家社科基金重大项目(12&ZD073)
{{custom_fund}}