作战方案(COA)优选是任务规划系统的重要组成部分, 其性能很大程度上决定了任务规划的性能. 因此针对任务规划必须符合作战要求和时效性要求, 提出了扩展TOPSIS和PSO结合的COA优选方法. 首先, 为了提高规划的时效性, 采用粒子群算法进行搜索优化; 对作战要求和作战效能数据进行模糊化处理, 生成标准化决策数据, 计算每个COA 到TOPSIS (逼近于理想解排序)正负理想解的距离; 得到COA灰色关联贴进度, 作为PSO算法的适应值. 文章最后进行实例分析, 验证该方法的可行性和有效性.
Abstract
Course of action (COA) selection is preferably an important part of the mission planning system. Its performance largely determines the performance of mission planning. So for mission planning must meet operational requirements and timeliness requirements, the selection method is proposed combined PSO with extended TOPSIS. First of all, fuzzy process the combat effective data and the operational requirements, generate decision-making standardized data; then calculate for each COA's distance to the ideal solution of TOPSIS, then sort through the gray relational to obtain the optimal solution. In addition, in order to improve the timeliness of planning, we use the particle swarm optimization (PSO). Finally, case study is conducted to verify the feasibility and effectiveness of the algorithm.
关键词
任务规划 /
作战方案(COA) /
TOPSIS /
PSO
{{custom_keyword}} /
Key words
mission planning /
COA /
TOPSIS /
PSO
{{custom_keyword}} /
中图分类号:
TP182
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bodt B, Forester J, Hansen C, et al. An experimental testbed for battle planning[R]. USA: U.S. Army Research Laboratory, 2000.
[2] 阳东升, 张维明, 刘忠, 等. 组织过程策略优化的案例分析与求解[J]. 系统仿真学报, 2005, 17(7): 1648-1654.Yang Dongsheng, Zhang Weiming, Liu Zhong, et al. Optimizing strategies of organizational processes: Analysis and solutions of case[J]. Journal of System Simulation, 2005, 17(7): 1648-1654.
[3] Tu H Y, Levchuk Y N, Pattipati K R. Robust action strategies to induce desired effects[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(5): 664-680.
[4] Neapolitan R E. Learning Bayesian networks[M]. Englewood Cliffs, New Jersey: Prentice-Hall, 2003.
[5] 张杰勇, 姚佩阳, 阳东升,等. 基于DINs和PSO的组织行动过程选择方法[J]. 系统工程理论与实践, 2011, 31(10): 1985-1993.Zhang Jieyong, Yao Peiyang, Yang Dongsheng, et al. Approach to organizational course of actions selection based on DINs and PSO[J]. Systems Engineering-Theory & Practice, 2011, 31(10): 1985-1993.
[6] 佟海鹏, 徐海刚, 刘兆平. 基于熵权灰关联法的基地防空作战方案优选[J].火力与指挥控制, 2012, 37(1): 113-115.Tong Haipeng, Xu Haigang, Liu Zhaoping. The model of selecting naval base antiaircraft battle scheme based on the analysis of grey relevancy and entropy weight[J]. Fire Control & Command Control, 2012, 37(1): 113-115.
[7] 陈向勇, 公茂水, 井元伟. 基于D-S证据理论的不完全信息作战方案优选[J]. 东北大学学报, 2012, 33(8): 1069-1073.Chen Xiangyong, Gong Maoshui, Jing Yuanwei. Selection of operation schemes with incomplete information based on D-S evidence theory[J]. Journal of Northeastern University (Natural Science), 2012, 33(8): 1069-1073.
[8] 陈向勇,井元伟, 公茂水. 一种基于集对分析的作战方案优选方法[J]. 东北大学学报, 2011, 32(8): 1068-1072.Chen Xiangyong, Jing Yuanwei, Gong Maoshui. Selection of operation schemes based on set pair analysis[J]. Journal of Northeastern University (Natural Science), 2011, 32(8): 1068-1072.
[9] 谭乐祖,任东彦,李大鹏. 灰色层次分析法在舰艇防空作战方案优选中的应用[J]. 兵工自动化, 2010, 29(1): 40-44.Tan Lezu, Ren Dongyan, Li Dapeng, et al. Application of grey AHP in optimization plane of naval ships air defense combat[J]. Ordnance Industry Automation, 2010, 29(1): 40-44.
[10] 曹柬,李平,周根贵,等. 基于三角模糊数和层次分析法的模型在导弹系统性能评价中的应用[J]. 兵工学报, 2005, 26(4): 566-569.Cao Jian, Li Ping, Zhou Gengui, et al. TFN-AHP model for performance evaluation of missile systems[J]. Acta Armamentarii, 2005, 26(4): 566-569.
[11] 赵锁珠. 基于多准则决策的作战飞机顶层方案优选[J]. 飞行力学, 2012, 30(1): 29-33.Zhao Suozhu. Scheme selection of aircraft top-layer design based on multi-criteria decision-making approach[J]. Flight Dynamics, 2012, 30(1): 29-33.
[12] 张毅, 姜青山. 基于分层TOPSIS法的预警机效能评估[J]. 系统工程与电子技术, 2011, 33(5): 1051-1054.Zhang Yi, Jiang Qingshan. Effectiveness evaluation of early-warning aircraft based on hierarchy TOPSIS[J]. Systems Engineering and Electronics, 2011, 33(5): 1051-1054.
[13] Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. IV Piscataway, NJ: IEEE Service Center, 1995: 1942-1948.
[14] Eberthart R C, Shi Y H. Particle swarm optimization: Developments, applications and resources[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Pscataway, NJ: IEEE Service Center, 2001: 81-86.
[15] Lee M C, To C. Linguistic variables and Pormethee method as tools in evaluation of quality of portal website service[J]. International Journal of Research and Reviews in Computer Science, 2010, 1(3): 20-27.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(60903027, 61003210);国家安全重大基础研究项目(613719)
{{custom_fund}}