多约束下随船备件配置优化方法

蔡芝明, 金家善, 李广波

系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (6) : 1561-1566.

PDF(477 KB)
PDF(477 KB)
系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (6) : 1561-1566. DOI: 10.12011/1000-6788(2015)6-1561
论文

多约束下随船备件配置优化方法

    蔡芝明, 金家善, 李广波
作者信息 +

Warship spare parts allotment optimization method under multi-constraints

    CAI Zhi-ming, JIN Jia-shan, LI Guang-bo
Author information +
文章历史 +

摘要

理想的随船备件库存配置方案应该通过多约束条件与优化目标之间的综合权衡得到, 在传统的随船备件库存优化模型中常以使用可用度、平均等待时间、延期交货量、费效比等作为优化目标,但国内使用部门及型号研制单位在制定随船备件库存方案时常以备件保障概率作为优化目标确定装备备件库存方案.为解决上述问题,首先分析了目标函数及约束条件; 然后构建了以备件保障概率为目标函数的随舰备件库存优化模型并应用拉格朗日乘子法及边际效应法原理给出了随船备件库存模型计算及优化流程; 其次,运用罚函数原理对保障资源约束因子进行了确定及动态调整; 最后,通过对案例结果进行分析,验证了该研究方法的可行性.

Abstract

A sound warship spare parts allotment optimization project is the result of cost efficient tradeoff between multi-constraints and optimal objective. In the conventional Warship spare parts allotment optimization models, the operational availability and the mean waiting time for spares and expect back order are always the target, but these parameters are rarely used by the domestic use department and model development unit to confirm the warship spare parts allotment project. In order to solve all the problems which are mentioned above, firstly, objective function and constraint conditions are analyzed; Secondly, an optimized model of the probability spare guarantee is built, Lagrange and marginal algorithm are applied to build the warship spare parts allotment optimization model and process optimization; Once more, the resource factors are being confirmed and dynamically updated; Finally, in the given example, by analyzing the results of the case, the feasibility of the proposed method is verified.

关键词

随船备件 / 多约束 / 备件保障概率 / 边际算法 / 拉格朗日乘子法 / 资源约束 / 配置优化

Key words

warship spare parts / multi-constraints / fill rate / marginal analysis / Lagrange / resource constraint / configuration optimization

引用本文

导出引用
蔡芝明 , 金家善 , 李广波. 多约束下随船备件配置优化方法. 系统工程理论与实践, 2015, 35(6): 1561-1566 https://doi.org/10.12011/1000-6788(2015)6-1561
CAI Zhi-ming , JIN Jia-shan , LI Guang-bo. Warship spare parts allotment optimization method under multi-constraints. Systems Engineering - Theory & Practice, 2015, 35(6): 1561-1566 https://doi.org/10.12011/1000-6788(2015)6-1561
中图分类号: U674.7    E917   

参考文献

[1] 王乃超, 康锐. 多约束条件下备件库存优化模型及分解算法[J]. 兵工学报, 2009, 30(2): 247-251. Wang Naichao, Kang Rui. An optimization model for inventory spares under multi-constraints and its decomposition algorithm[J]. Acta Armamentarii, 2009, 30(2): 247-251.
[2] 阮旻智, 李庆民, 彭英武, 等. 多指标约束下舰载装备维修级别建模与优化[J]. 系统工程与电子技术, 2012, 34(5): 955-960. Ruan Minzhi, Li Qingmin, Peng Yingwu, et al. Modeling and optimization for repair level of shipborne equipment under multi-constraints[J]. Systems Engineering and Electronics, 2012, 34(5): 955-960.
[3] 阮旻智, 李庆民, 张光宇, 等. 多约束下舰船装备携行备件保障方案优化方法[J]. 兵工学报, 2013, 34(9): 1144-1149. Ruan Minzhi, Li Qingmin, Zhang Guangyu, et al. Optimization method of carrying spare parts warship equipment under multi-constraints[J]. Acta Armamentarii, 2013, 34(9): 1144-1149.
[4] Loo H L, Ek P C, Suyna T, et al. Multi-objective simulation based evolutionary algorithm for an aircraft spare parts allocation problem[J]. European Journal of Operational Research, 2008, 189(2): 325-341.
[5] Robert C K, Tovey C. Estimating spare requirements with commonality and redundancy[J]. Journal of Spacecraft and Rockets, 2007, 44(4): 977-984.
[6] Nosoohi I, Hejazi S R. A multi-objective approach to simultaneous times[J]. Applied Mathematical Modeling, 2011, 35(3): 1157-1166.
[7] Sherbrooke C C. Vari-METRIC: Improved approximation for multi-indenture, multi-echelon availability models[J]. Operation Research, 1986, 34(2): 584-595.
[8] Sherbrooke C C. METRIC: A multi-echelon technique for re-coverable item control[J]. Operation Research, 1968, 16(1): 122-141.
[9] Sherbrooke C C. Optimal inventory modeling of systems: Multi-echelon techniques[M]. 2nd ed. Amercian: John Wiley and Sons, 2004: 57-71.
[10] AD-A280629. The application of a readiness sparing model to foreign military sales[R]. 1994.
[11] Ward R, Ruud T, Willem V J. A two-step method for forecasting spare parts demand using information on component repairs[J]. European Journal of Operational Research, 2012, 220(2): 386-393.
[12] Molenaers A, Herman B, Liliane P, et al. Criticality classification of spare parts: A case study[J]. International Journal of Production Economics, 2012, 140(2): 570-578.
[13] Francesco C, Giulio D G, Massimo T. Multi-echelon, multi-indenture spare parts inventory control subject to system availability and budget constraints[J]. Reliability Engineering & System Safety, 2013, 119(11): 95-101.
[14] Yoon K B, Sohn S Y. Finding the optimal CSP inventory level for multi-echelon system in air force random effects regression model[J]. European Journal of Operational Research, 2007, 180(3): 1076-1085.
[15] 阮旻智, 李庆民, 李承, 等. 改进的分层边际算法优化设备的初始备件配置方案[J]. 兵工学报, 2012, 33(10): 105-111. Ruan Minzhi, Li Qingmin, Li Cheng, et al. Improved layered marginal algorithm to optimize initial spare part configuration project[J]. Acta Armamentarii, 2012, 33(10): 105-111.
[16] 阮旻智, 李庆明, 王红军, 等. 人工免疫粒子群算法在系统可靠性优化中的应用[J]. 控制理论与应用, 2010, 27(9): 1253-1258. Ruan Minzhi, Li Qingming, Wang Hongjun, et al. Application of artificial immune particle swarm optimization algorithm to system-reliability optimization[J]. Control Theory & Application, 2010, 27(9): 1253-1258.
[17] 王乃超, 康锐. 基于备件保障概率的多级库存优化模型[J]. 航空学报, 2009, 30(6): 1043-1047. Wang Naichao, Kang Rui. Optimization of multi-echelon repairable item inventory systems with fill rate as objective[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1043-1047.

基金

国家部委资助项目(513030203-01); 国家自然科学基金(50906099)
PDF(477 KB)

Accesses

Citation

Detail

段落导航
相关文章

/