通过物流网络的优化设计来控制碳排放是提高低碳物流绩效的一种重要途径.针对模糊环境下多级低碳物流网络设计的战略定位和配置问题,综合考虑多级物流网络参数的模糊性以及战术层的多商品流、多生产技术和多运输方式的选择决策,以最小化物流网络的总成本和总碳排放为目标,集成采用期望值规划方法和机会约束规划方法,建立了基于可信性的多目标模糊数学规划模型.该模型引入二氧化碳当量作为衡量物流网络对环境影响的评估指标.然后,设计了一种基于可信性测度的交互式模糊求解方法对多目标模糊规划模型予以求解.最后,通过算例验证了模型和算法的有效性和可行性.
Abstract
Using logistics network optimization design to control carbon emissions is an important way to enhance low-carbon logistics performance. To cope with the strategic location and configuration problem of multi-stage low-carbon logistics network design under fuzzy conditions, integrating the expected value and the chance constrained programming approaches, a credibility-based multi-objective fuzzy mathematical programming model is developed by considering the fuzzy parameters of multi-stage logistics network, and tactical multiple product flows, production technologies, and transportation modes selection decisions. This model aims to minimize the total costs and total carbon emissions of logistics network. And it also introduces the carbon dioxide equivalent to be an environmental impact assessment index across the concerned logistics network. Then, an interactive fuzzy solution approach based on credibility measure is proposed to solve the multi-objective fuzzy programming model. Finally, a numerical example is tested to show the validity and feasibility of the proposed model and algorithm.
关键词
低碳物流 /
网络设计 /
模糊规划 /
可信性理论 /
碳排放
{{custom_keyword}} /
Key words
low-carbon logistics /
network design /
fuzzy programming /
credibility theory /
carbon emissions
{{custom_keyword}} /
中图分类号:
F252
X323
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Pishvaee M S, Farahani R Z, Dullaert W. A memetic algorithm for bi-objective integrated forward/reverse logistics network design[J]. Computers & Operation Research, 2010, 37(6): 1100-1112.
[2] Romeijn H E, Shu J, Teo C P. Designing two-echelon supply networks[J]. European Journal of Operational Research, 2007, 178(2): 449-462.
[3] 倪玲霖, 史峰. 多分配快递轴辐网络的枢纽选址与分配优化方法[J]. 系统工程理论与实践, 2012, 32(2): 441-448.Ni Linglin, Shi Feng. Hub location and allocation optimization of multiple allocation hub-and-spoke express networks[J]. Systems Engineering —— Theory & Practice, 2012, 32(2): 441-448.
[4] Santoso T, Ahmed S, Goetschalckx M, et al. A stochastic programming approach for supply chain network design under uncertainty[J]. European Journal of Operational Research, 2005, 167(1): 96-115.
[5] Shu J, Teo C P, Shen Z J. Stochastic transportation-inventory network design problem[J]. Operations Research, 2004, 53(1): 48-60.
[6] Miranda P A, Garrido R A. Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand[J]. Transportation Research Part E, 2004, 40(3): 183-207.
[7] Altiparmak F, Gen M, Lin L, Paksoy T. A genetic algorithm approach for multi-objective optimization of supply chain networks[J]. Computers & Industrial Engineering, 2006, 51(1): 197-216.
[8] 钟昌宝, 魏晓平, 聂茂林, 等.考虑DNCVaR-利润-客户满意度的分销网络设计多目标优化模型[J].系统工程理论与实践, 2012, 32(10): 2154-2162.Zhong Changbao, Wei Xiaoping, Nie Maolin, et al. Multi-objective optimization model of distribution network design considering DNCVaR-Benefit-Customer satisfaction[J]. Systems Engineering —— Theory & Practice, 2012, 32(10): 2154-2162.
[9] 代颖, 马祖军, 朱道立, 等.震后应急物资配送的模糊动态定位-路径问题[J].管理科学学报, 2012, 15(7): 60-70.Dai Ying, Ma Zujun, Zhu Daoli, et al. Fuzzy dynamic location-routing problem in post-earthquake delivery of relief materials[J]. Journal of Management Sciences in China, 2012, 15(7): 60-70.
[10] 何波, 孟卫东.产品回收逆向物流网络设计问题的两阶段启发式算法[J].运筹与管理, 2010, 19(1): 73-79.He bo, Meng Weidong. A heuristic approach to reverse logistics network design for product return[J]. Operations Research and Management Science, 2010, 19(1): 73-79.
[11] Pishvaee M S, Rabbani M. A graph theoretic-based heuristic algorithm for responsive supply chain network design with direct and indirect shipment. Advances in Engineering Software, 2011, 42(3): 57-63.
[12] Srivastara S K. Green supply-chain management: A state-of-the-art literature review[J]. International Journal of Management Reviews, 2007, 9(1): 53-80.
[13] Hugo A, Pistikopoulos E N. Environmentally conscious long-range planning and design of supply chain networks[J]. Journal of Cleaner Production, 2005, 13(15): 1471-1491.
[14] Wang F, Lai X F, Shi N. A multi-objective optimization for green supply chain network design[J]. Decision Support Systems, 2011, 51(2): 262-269.
[15] Quariguasi Frota Neto J, Walther G, Bloemhof J, et al. A methodology for assessing eco-efficiency in logistics networks[J]. European Journal of Operational Research, 2009, 193(3): 670-682.
[16] 李进, 傅培华.具有固定车辆数的多车型低碳路径问题及算法[J].计算机集成制造系统, 2013, 19(6): 1351-1362.LI Jin, FU Peihua. Heterogeneous fixed fleet low-carbon routing problem and algorithm[J]. Computer Integrated Manufacturing Systems, 2013, 19(6): 1351-1362.
[17] El-Sayed M, Afia N, El-Kharbotly A. A stochastic model for forward reverse logistics network design under risk[J]. Computers & Industrial Engineering, 2010, 58(3): 423-431.
[18] Schütz P, Tomasgard A, Ahmed S. Supply chain design under uncertainty using sample average approximation and dual decomposition[J]. European Journal of Operational Research, 2009, 199(2): 409-419.
[19] Pishvaee M S, Rabbani M, Torabi S A. A robust optimization approach to closed-loop supply chain network design under uncertainty[J]. Applied Mathematical Modelling, 2011, 35(2): 637-649.
[20] Pishvaee M S, Torabi S A. A possibilistic programming approach for closed-loop supply chain network design under uncertainty[J]. Fuzzy Sets and Systems, 2010, 161(20): 2668-2683.
[21] Qin Z, Ji X. Logistics network design for product recovery in fuzzy environment[J]. European Journal of Operational Research, 2010, 202(2): 479-490.
[22] Amiri A. Designing a distribution network in a supply chain system: Formulation and efficient solution procedure[J]. European Journal of Operational Research, 2006, 171(2): 567-576.
[23] Liu B, Liu Y K. Expected value of fuzzy variable and fuzzy expected value models[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(4): 445-450.
[24] 刘宝碇, 彭锦.不确定理论教程[M].北京:清华大学出版社, 2005.Liu Baoding, Peng Jin. A course in uncertainty theory[M]. Beijing: Tsinghua University Press, 2005.
[25] Hwang C L, Masud A. Multiple attribute decision making methods and applications: A state of the art survey[C]// Lecture Notes in Economics and Mathematical Systems, 1979, vol.164.
[26] Torabi S A, Hassini E. An interactive possibilistic programming approach for multiple objective supply chain master planning[J]. Fuzzy Sets and Systems, 2008, 159(2): 193-214.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71302035, 71301145); 教育部人文社科项目(12YJC630091);浙江工商大学青年人才基金(QY13-23)
{{custom_fund}}