灰色样条绝对关联度模型

陈勇明, 张明

系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (5) : 1304-1310.

PDF(543 KB)
PDF(543 KB)
系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (5) : 1304-1310. DOI: 10.12011/1000-6788(2015)5-1304
论文

灰色样条绝对关联度模型

    陈勇明, 张明
作者信息 +

Cubic spline based grey absolute relational grade model

    CHEN Yong-ming, ZHANG Ming
Author information +
文章历史 +

摘要

灰色绝对关联度的计算基于用序列对应的折线来近似描述系统的行为特征量. 从插值的角度看, 折线即分段线性插值, 其局限之一在于节点处不具有光滑性而真实轨迹曲线在采样点一般是光滑的; 局限之二在于系统轨迹曲线曲率大时折线近似的误差相应增大, 由于灰色系统研究对象为少数据贫信息系统, 从而折线不能逼近真实轨迹曲线. 为此, 提出灰色样条绝对关联度模型以改进灰色绝对关联度, 先用具有优良光滑性且近似效果好的三次样条插值函数来获得描述系统行为特征量的曲线, 然后通过积分计算绝对关联度. 讨论了灰色样条绝对关联度的性质和适用范围, 灰色样条绝对关联度尤其适用于生长曲线类系统的关联分析, 此外其可直接应用于不等时距序列.

Abstract

To calculate grey absolute relational grade (GARG) is based on employing polygonal line to approximate a system's behavior trial. From the perspective of interpolation, the polygonal line is piecewise linear interpolation method. It has two main drawbacks, one is that it is not smooth at the node while the real trial of some system is; the other is that the approximation error is big when the real trial has big curvature, since grey system's study object is a system with small sample or poor information, so the polygonal line can't approach the system's real trial. Therefore, a new GARG called cubic spline based grey absolute relational grade (CUSGARG) is put forward to improve the two drawbacks, where the cubic spline function is employed to improve grey absolute relational grade: first of all, the cubic spline function is used to appropriate the system's trial, and then follow the classic method to calculate the GARG. Properties and utility range of the CUSGARG are explored. The CUSGARG can be applied to analyze growth-curve-type system. In addition, the CUSGARG is suitable for unequal interval time series.

关键词

灰色系统 / 灰色关联度 / 灰色绝对关联度 / 折线 / 三次样条插值 / 灰色样条绝对关联度

Key words

grey system / grey relational grade / grey absolute relational grade / polygonal line / cubic spline function / cubic spline based grey absolute relational grade

引用本文

导出引用
陈勇明 , 张明. 灰色样条绝对关联度模型. 系统工程理论与实践, 2015, 35(5): 1304-1310 https://doi.org/10.12011/1000-6788(2015)5-1304
CHEN Yong-ming , ZHANG Ming. Cubic spline based grey absolute relational grade model. Systems Engineering - Theory & Practice, 2015, 35(5): 1304-1310 https://doi.org/10.12011/1000-6788(2015)5-1304
中图分类号: N941.5   

参考文献

[1] 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 5版. 北京: 科学出版社, 2010. Liu Sifeng, Dang Yaoguo, Fang Zhigeng, et al. Grey system theory and its applications[M]. 5th ed. Beijing: Science Press, 2010.
[2] Liu H, Wang W P, Zhang Q S, et al. Knowledge integration of cluster networks based on grey relational analysis knowledge similarities[J]. The Journal of Grey System, 2013, 25(1): 12-23.
[3] Gao H, Yao T X, Liu S F. Methods of face recognition based on local singular value decomposition and grey relational analysis[J]. The Journal of Grey System, 2012, 24(1): 81-88.
[4] Kose E, Burmaoglu S, Kabak M. Grey relational analysis between energy consumption and economic growth[J]. Grey Systems: Theory and Application, 2013, 3(3): 291-304.
[5] Delcea C, Scarlat E, Cotfas L A. Companies' quality characteristics vs their performance: A grey relational analysis - evidence from Romania[J]. Grey Systems: Theory and Application, 2013, 3(2): 129-141.
[6] Bali O, Kose E, Gumus S. Green supplier selection based on IFS and GRA[J]. Grey Systems: Theory and Application, 2013, 3(2): 158-176.
[7] Li H J, Hu W, Xie Z G, et al. Image denoising method based on grey relational threshold[J]. Grey Systems: Theory and Application, 2013, 3(2): 191-200.
[8] Liu H, Wang W P, Zhang Q S. Multi-objective location-routing problem of reverse logistics based on GRA with entropy weight[J]. Grey Systems: Theory and Application, 2012, 2(2): 249-258.
[9] 王清印, 赵秀恒. C型关联分析[J]. 华中理工大学学报, 1999, 27(3): 75-77. Wang Qingyin, Zhao Xiuheng. The relational analysis of C-mode[J]. Journal of Huazhong University of Science & Technology, 1999, 27(3): 75-77.
[10] 唐五湘. T型关联度及其计算方法[J]. 数理统计与管理, 1995, 14(1): 34-37. Tang Wuxiang. The concept and the computation method of T's correlation degree[J]. Journal of Applied Statistics and Management, 1995, 14(1): 34-37.
[11] 肖新平, 谢录臣, 黄定荣. 灰色关联度计算的改进及其应用[J]. 数理统计与管理, 1995, 14(5): 27-30. Xiao Xinping, Xie Luchen, Huang Dingrong. A modified computation method of grey correlation degree and its application[J]. Journal of Applied Statistics and Management, 1995, 14(5): 27-30.
[12] 李学全, 李松仁, 韩旭里. 灰色系统理论研究(I): 灰色关联度[J]. 系统工程理论与实践, 1996, 16(11): 91-95. Li Xuequan, Li Songren, Han Xuli. Research on the computation model of grey interconnect degree[J]. Systems Engineering - Theory & Practice, 1996, 16(11): 91-95.
[13] 党耀国, 刘思峰, 刘斌, 等. 灰色斜率关联度的改进[J]. 中国工程科学, 2004, 6(3): 41-44. Dang Yaoguo, Liu Sifeng, Liu Bin, et al. Improvement on degree of grey slope incidence[J]. Engineering Science, 2004, 6(3): 41-44.
[14] 陈勇明, 冯鹤林, 戴奇华. 基于三角形相似的Delta灰色关联度研究[J]. 统计与决策, 2010, 23: 16-18. Chen Yongming, Feng Helin, Dai Qihua. Triangle similarity based Delta grey relational grade[J]. Statistics and Decision, 2010, 23: 16-18.
[15] Zhang R, Liu B, Li Y, et al. A new computation method model of grey relational degree[J]. The Journal of Grey System, 2011, 23(2): 161-168.
[16] Xie N M, Liu S F. A novel grey relational model based on grey number sequences[J]. Grey Systems: Theory and Application, 2011, 1(2): 117-128.
[17] 吴利丰, 王义闹, 刘思峰. 灰色凸关联及其性质[J]. 系统工程理论与实践, 2012, 32(7): 1501-1505.Wu Lifeng, Wang Yinao, Liu Sifeng. Grey convex relation and its properties[J]. Systems Engineering - Theory & Practice, 2012, 32(7): 1501-1505.
[18] Liu S F, Fang Z G, Lin Y. Study on a new definition of degree of grey incidence[J]. Journal of Grey System, 2006, 9(2): 115-122.
[19] Liu S F, Xie N M, Forrest J. Novel models of grey relational analysis based on visual angle of similarity and nearness[J]. Grey Systems: Theory and Application, 2011, 1(1): 8-18.
[20] 施红星, 刘思峰, 方志耕, 等. 灰色周期关联度模型及其应用研究[J]. 中国管理科学, 2008, 16(3): 131-136. Shi Hongxing, Liu Sifeng, Fang Zhigeng, et al. The model of grey periodic incidence and their rehabilitation[J]. Chinese Journal of Management Science, 2008, 16(3): 131-136.
[21] 施红星, 刘思峰, 方志耕, 等. 灰色振幅关联度模型[J]. 系统工程理论与实践, 2010, 30(10): 1828-1833. Shi Hongxing, Liu Sifeng, Fang Zhigeng, et al. Grey amplitude incidence model[J]. Systems Engineering - Theory & Practice, 2010, 30(10): 1828-1833.
[22] 沈剑华. 数值计算基础[M]. 2版.上海: 同济大学出版社, 2004.Shen Jianhua. Fundamentals of numerical analysis[M]. 2nd ed. Shanghai: Tongji University Press, 2004.
[23] Saavedra A, Arce E, Miguez J L, et al. Potential effect of uncertainty on the GRG interpretation[J]. Grey Systems: Theory and Application, 2013, 3(2): 121-128.

基金

国家自然科学基金(11226262);国家社会科学基金(13BZZ055);四川省科学技术厅应用基础计划基金(2015JY0022)
PDF(543 KB)

394

Accesses

0

Citation

Detail

段落导航
相关文章

/