基于网络闭包理论的交易型社区网络演化研究

黄敏学, 肖邦明, 孙培翔

系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (5) : 1165-1176.

PDF(1413 KB)
PDF(1413 KB)
系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (5) : 1165-1176. DOI: 10.12011/1000-6788(2015)5-1165
论文

基于网络闭包理论的交易型社区网络演化研究

    黄敏学, 肖邦明, 孙培翔
作者信息 +

Network evolution of transactional community based on network closure theory

    HUANG Min-xue, XIAO Bang-ming, SUN Pei-xiang
Author information +
文章历史 +

摘要

随着社会化商务时代的到来,交易型社区的发展越来越成为解决社会化商务中经济性与社会性矛盾的关键.但交易型社区与传统社交社区在成员角色和动机上的差异性也导致其网络演化的特殊性.本研究以国内最大的交易型网站(淘宝网)为平台,选取其中最活跃的圈子社区之一(共7902名会员,有效样本为6195名会员)为研究对象,分析交易型社区网络闭包机制相对于传统社交网络闭包机制的差异性.研究结果表明: (1)由于互惠关系的形成可能需要较高的交互成本并带来关系依赖和关系无效率的风险,交易型社区中成员会回避互惠关系的形成; (2)在一个主要由陌生人组成的交易型社区的模糊情境下,信息性社会影响起着主要作用,信息源的传播路径越多一方面加强了信息源的传染性,但另一方面也降低了该信息源的必要性而不利于其他成员与其构建关系; (3)交易型社区网络闭包(关系构建)的主要动力来源于成员间的相似性(选择性影响),具体表现在共同的社区好友和共同参与的社区活动上.

Abstract

As the era of social commerce is coming, the transactional community has become a key solution to the contradiction between economic nature and social nature in social commerce. Traditional social network analysis explored the evolution of social network, while transactional community is very different from social community regarding the roles and motivations of their members. This research, based on one of the most active communities in Taobao.com, analyzed the differences of transactional community in network closure mechanism. The results showed: (1) Members in transactional community would choose to avoid reciprocity because of high cost of social interaction and the risk of inefficiency of relationship; (2) In a vague situation where informational social influence impacts the most, more options of contagion path would enhance influence but harm necessity of its member, which has a negative effect on relationship establishment; (3) The relationship establishment in transactional community comes mainly from the similarities among members, which include the mutual acquaintances or mutual activities.

关键词

交易型社区 / 网络闭包 / 互惠性 / 传染性 / 选择性

Key words

transactional community / network closure / reciprocity / contagion / selection

引用本文

导出引用
黄敏学 , 肖邦明 , 孙培翔. 基于网络闭包理论的交易型社区网络演化研究. 系统工程理论与实践, 2015, 35(5): 1165-1176 https://doi.org/10.12011/1000-6788(2015)5-1165
HUANG Min-xue , XIAO Bang-ming , SUN Pei-xiang. Network evolution of transactional community based on network closure theory. Systems Engineering - Theory & Practice, 2015, 35(5): 1165-1176 https://doi.org/10.12011/1000-6788(2015)5-1165
中图分类号: C912.3   

参考文献

[1] Kaplan A M, Haenlein M. Users of the world, unite! The challenges and opportunities of social media[J]. Business Horizons, 2010, 53(1): 59-68.
[2] Stephen A T, Olivier T. Deriving value from social commerce networks[J]. Journal of Marketing Research, 2010, DOI: 10.2139/ssrn.1150995.
[3] Curty R G, Zhang P. Social commerce: Looking back and forward[C]// Proceedings of the American Society for Information Science and Technology, 2011, 48(1), 1-10.
[4] Marsden P. Social commerce[M]. Grin Verlag, 2010.
[5] Trusov M, Bodapati A V, Bucklin R E. Determining influential users in internet social networks[J]. Journal of Marketing Research, 2010, 47(4): 643-658.
[6] Aral S, Walker D. Identifying influential and susceptible members of social networks[J]. Science, 2012, 337(6092): 337-341.
[7] Kumar V, Bhaskaran V, Mirchandani R, et al. Creating a measurable social media marketing strategy for hokey pokey: Increasing the value and ROI of intangibles and tangibles[J]. Marketing Science, 2013, 32: 194-212.
[8] 黄敏学, 王殿文. 从客户关系管理到客户圈子管理[J]. 企业管理, 2010(6): 98-100.Huang Minxue, Wang Dianwen. From customer relationship management to social customer relationship management[J]. Enterprise Management, 2010(6): 98-100.
[9] Burt R S. Structural holes: The social structure of competition[M]. Harvard University Press, 2009.
[10] Newman M E J, Park J. Why social networks are different from other types of networks[J]. Physical Review E, 2003, 68(3): 036122.
[11] Faust K. Centrality in affiliation networks[J]. Social Networks, 1997, 19(2): 157-191.
[12] Ransbotham S, Gerald C K, Nicholas H L. Network characteristics and the value of collaborative user-generated content[J]. Marketing Science, 2012, 31(3): 387-405.
[13] Granovetter M S. The strength of weak ties[J]. American Journal of Sociology, 1973, 78(6): 1360-1380.
[14] Lewis T G. Network science: Theory and applications[M]. John Wiley & Sons, 2011.
[15] Borgatti S P, Mehra A, Brass D J, et al. Network analysis in the social sciences[J]. Science, 2009, 323(5916): 892-895.
[16] 崔爱香, 傅彦, 尚明生, 等. 复杂网络局部结构的涌现:共同邻居驱动网络演化[J]. 物理学报, 2011, 60(3): 038901.Cui Aixiang, Fu Yan, Shang Mingsheng, et al. Emergence of local structure in complex network: Common neighborhood drives the network evolution[J]. Acta Physica Sinica, 2011, 60(3): 038901.
[17] 陆君安, 吕琳媛, 张子柯, 等. 复杂网络观察[J]. 复杂系统与复杂性科学, 2010, 7(2-3): 173-186.Lu Junan, Lü Linyuan, Zhang Zike, et al. Looking into complex networks[J]. Complex Systems and Complexity Science, 2010, 7(2-3): 173-186.
[18] Koskinen J, Edling C. Modeling the evolution of a bipartite network—Peer referral in interlocking directorates[J]. Social Networks, 2012, 34(3): 309-322.
[19] Goldstein M L, Morris S A, Yen G G. Group-based Yule model for bipartite author-paper networks[J]. Physical Review E, 2005, 71(2): 026108.
[20] Chen Y, Li S X. Group identity and social preferences[J]. The American Economic Review, 2009: 431-457.
[21] 吕琳媛, 周涛. 链路预测[M]. 北京:高等教育出版社, 2013: 57-76
[22] 周涛, 柏文洁, 汪秉宏, 等. 复杂网络研究概述[J]. 物理, 2005, 34(1): 2-12.Zhou Tao, Bai Wenjie, Wang Binghong, et al. A brief review of complex networks[J]. Physics, 2005, 34(1): 2-12.
[23] Ahnert S E, Fink T M A. Clustering signatures classify directed networks[J]. Physical Review E, 2008, 78(3): 036112.
[24] Kossinets G, Duncan J W. Empirical analysis of an evolving social network[J]. Science, 2006, 311: 88-90.
[25] Crandall D, Cosley D, Huttenlocher D, et al. Feedback effects between similarity and social influence in online communities[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2008: 160-168.
[26] Doreian P, Stockman F. Evolution of social networks[M]. Routledge, 2013.
[27] Nowak M A. Five rules for the evolution of cooperation[J]. Science, 2006, 314(5805): 1560-1563.
[28] Gu F F, Hung K, Tse D K. When does guanxi matter? Issues of capitalization and its dark sides[J]. Journal of Marketing, 2008, 72(4): 12-28.
[29] Fehr E, Gachter S. Cooperation and punishment in public goods experiments[J]. The American Economic Review, 2000, 90(4): 980-994.
[30] Young H P. Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning[J]. The American Economic Review, 2009, 99(5): 1899-1924.
[31] Kilduff M, Tsai W. Social networks and organizations[M]. Sage, 2003.
[32] Milgram S. The small world problem[J]. Psychology Today, 1967, 2(1): 60-67.
[33] Mashima D, Kobourov S, Hu Y. Visualizing dynamic data with maps[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(9): 1424-1437.
[34] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008.
[35] 张锴琦, 杜海峰, 蔡萌, 等. 基于节点属性的社群结构探测算法改进[J]. 系统工程理论与实践, 2013, 33(11): 2879-2886.Zhang Kaiqi, Du Haifeng, Cai Meng, et al. Improved community structure detection algorithm based on the node's property[J]. Systems Engineering - Theory & Practice, 2013, 33(11): 2879-2886.
[36] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[37] Fang X, Hu P J H, Li Z L, et al. Predicting adoption probabilities in social networks[J]. Information Systems Research, 2013, 24(1): 128-145.

基金

国家自然科学基金(71372127);海外及港澳学者合作研究基金(71328203);教育部新世纪优秀人才项目(NCET-12-0420);武汉 大学自主科研项目(2013105010212)
PDF(1413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/