在OEM(original equipment manufacturer)供应链中,随机供应会产生缺货的风险,随机需求会导致误判订单的风险.为了降低这些风险给OEM 供应链造成的损失, 基于CVaR风险度量准则建立了一个风险厌恶的品牌企业和一个风险中性的OEM供应商的Stackelberg博弈模型, 求解出分散决策下的均衡定价与订货策略,提出了结合缺货惩罚和收益分享的协调机制.研究结果表明,均衡定价与订货策略可以最小化品牌企业的条件风险价值,且最大化OEM供应商的期望利润;风险厌恶程度影响品牌企业的订货量,风险厌恶程度越大,订货量越小;品牌企业通过按缺货数量收取罚金,并向OEM供应商分享一部分利润,可以提高订货数量,实现供应链协调; 协调契约的参数取值受OEM 供应商的定价策略制约,而定价策略又受风险厌恶程度的影响.
Abstract
In an OEM supply chain, the uncertainty from the supply results in the risk of shortage, and the uncertainty from the demand brings in the risk of wrong ordering. In order to reduce the losses from these risks, this paper models a Stackelberg game between a risk-averse original equipment manufacturer(OEM) and a risk-neutral contract manufacturer(CM) to get the equilibrium pricing and ordering, based on conditional value-at-risk. Finally, a contract combining shortage penalty and revenue sharing is proposed to coordinate the OEM supply chain. The results show that the equilibrium pricing and ordering can minimize the conditional value-at-risk of the OEM, and maximize the expected profit of the CM. The risk aversion can affect the order quantity. When the OEM is more risk-averse, the order quantity gets smaller. The supply chain can be coordinated when the order is improved by the way that the OEM penalizes the CM for the shortage and shares a part of revenue with CM. The parameters of contract depend on the CM's pricing which is affected by the OEM's aversion to risk.
关键词
供应链协调 /
博弈 /
风险厌恶 /
条件风险价值
{{custom_keyword}} /
Key words
supply chain coordination /
game theory /
risk-aversion /
CVaR
{{custom_keyword}} /
中图分类号:
F273.7
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Arrunada B, Vazquez X H. When your contract manufacturer becomes your competitor[J]. Harvard Business Review, 2006, 84(9): 1-10.
[2] 江新英, 李献宾, 顾大福, 等. 全球价值链类型与OEM企业成长路径[J]. 中国软科学, 2009, 24(11): 34-41.Jiang Xinying, Li Xianbin, Gu Dafu, et al. Study on the types of global value chains and the growth path of OEM enterprises[J]. China Soft Science, 2009, 24(11): 34-41.
[3] 李果, 张祥, 马士华, 等. 不确定交货条件下供应链装配系统订货优化与协调研究综述[J]. 计算机集成制造系统, 2012, 18(2): 369-380.Li Guo, Zhang Xiang, Ma Shihua, et al. Ordering optimization and coordination in supply chain assembly system under uncertain delivery conditions[J]. Computer Integrated Manufacturing Systems, 2012, 18(2): 369-380.
[4] Schweitzer M E, Cachon G P. Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence[J]. Management Science, 2000, 46(3): 404-420.
[5] Gurnani H, Gerchak Y. Coordination in decentralized assembly systems with uncertain component yields[J]. European Journal of Operational Research, 2007, 176(3): 1559-1576.
[6] 马士华, 李果. 供应商产出随机下基于风险共享的供应链协同模型[J]. 计算机集成制造系统, 2010, 16(3): 563-572.Ma Shihua, Li Guo. Collaborative model of supply chain based on risk sharing under random yield[J]. Computer Integrated Manufacturing Systems, 2010, 16(3): 563-572.
[7] Yan X M, Zhang M H, Liu K. A note on coordination in decentralized assembly systems with uncertain component yield[J]. European Journal of Operational Research, 2010, 205(2): 469-478.
[8] Gurnani H, Akella R, Lehoczky J. Supply management in assembly systems with random yield and random demand[J]. IIE Transactions, 2000, 32(8): 701-714.
[9] Güler M G, Bilgic T. On coordinating an assembly system under random yield and random demand[J]. European Journal of Operational Research, 2009, 196(1): 342-350.
[10] Hsieh C C, Wu C H. Capacity allocation, ordering, and pricing decisions in a supply chain with demand and supply uncertainties[J]. European Journal of Operational Research, 2008, 184(2): 667-684.
[11] Xanthopoulos A, Vlachos D, Iakovou E. Optimal newsvendor policies for dual-sourcing supply chains: A disruption risk management framework[J]. Computers & Operations Research, 2012, 39(2): 350-357.
[12] Wu J, Li J, Wang S Y, et al. Mean-variance analysis of the newsvendor model with stockout cost[J]. Omega, 2009, 37(8): 724-730.
[13] Choi T M, Li D, Yan H M, et al. Channel coordination in supply chains with agents having mean-variance objectives[J]. Omega, 2008, 36(6): 565-576.
[14] He Y, Zhao X. Coordination in multi-echelon supply chain under supply and demand uncertainty[J]. International Journal of Production Economics, 2012, 139(1): 106-115.
[15] Giri B C. Managing inventory with two suppliers under yield uncertainty and risk aversion[J]. International Journal of production economics, 2011, 133(1): 80-85.
[16] Gotoh J Y, Takano Y. Newsvendor solutions via conditional value-at-risk minimization[J]. European Journal of Operational Research, 2007, 179(1): 80-96.
[17] Yang L, Xu M H, Yu G, et al. Supply chain coordination with CVaR criterion[J]. Asia-Pacific Journal of Operational Research, 2009, 26(1): 135-160.
[18] 叶飞, 陈晓明, 林强. 基于决策者风险规避特性的供应链需求信息共享价值分析[J]. 管理工程学报, 2012, 26(3): 176-183.Ye Fei, Chen Xiaoming, Lin Qiang. Analysis of supply chain's demand information sharing values based on decision-maker's risk aversion characteristics[J]. Journal of Industrial Engineering and Engineering Management, 2012, 26(3): 176-183.
[19] 邱若臻, 黄小原. 基于条件风险值准则的供应链回购契约协调策略[J]. 运筹与管理, 2011, 20(4): 10-16.Qiu Ruozhen, Huang Xiaoyuan. The supply chain buyback contract coordination strategy based on conditional value-at-risk criterion[J]. Operations Research and Management Science, 2011, 20(4): 10-16.
[20] 林强, 叶飞, 陈晓明. 随机弹性需求条件下基于CVaR与收益共享契约的供应链决策模型[J]. 系统工程理论与实践, 2011, 31(12): 2296-2307.Lin Qiang, Ye Fei, Chen Xiaoming. Decision models for supply chain based on CVaR and revenue sharing contract under stochastic elastic demand[J]. Systems Engineering - Theory & Practice, 2011, 31(12): 2296-2307.
[21] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3): 21-41.
[22] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking and Finance, 2002, 26(7): 1443-1471.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71372154,70972079);广东金融学院校级研究项目(14XJ02-14)
{{custom_fund}}