基于不确定微分方程的网络舆情传播模型研究

苏创, 彭锦, 李圣国

系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (12) : 3201-3209.

PDF(956 KB)
PDF(956 KB)
系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (12) : 3201-3209. DOI: 10.12011/1000-6788(2015)12-3201
论文

基于不确定微分方程的网络舆情传播模型研究

    苏创1, 彭锦2, 李圣国2
作者信息 +

The internet public opinion propagation model via uncertain differential equation

    SU Chuang1, PENG Jin2, LI Sheng-guo2
Author information +
文章历史 +

摘要

不确定微分方程是由典范过程驱动的一类微分方程, 是一 种描述不确定过程或不确定动态系统的新型数学工具. 本文在研究网络舆情传播过程和传播类型的基础上, 充分考虑网络舆情传播过程中存在的一些不确定因素, 根据网络舆情传播的不同阶段提出相应的基于不确定微分方程的网络舆情传 播模型. 最后结合甘肃兰州自来水苯含量超标事件给出了衰退阶段模型的数值计算实例, 预测结果与实际传播情况基本吻合.

Abstract

Uncertain differential equation is a type of differential equation driven by canonical process, is a new mathematical tool for describing uncertain process or uncertain dynamical system. Based on the research of the propagation process and propagation types of internet public opinion, and fully considering some uncertain factors that exist in the process of the internet public opinion propagation, we put forward the models of internet public opinion propagation which are based on uncertain differential equation according to the different stages of internet public opinion propagation. Finally, we provide numerical examples of recession phase model which are combining with the event of benzene exceed bid of water supply from Lanzhou, Gansu, and the predicted results basically tally with the actual propagation facts.

关键词

网络舆情 / 不确定动态系统 / 不确定过程 / 不确定微分方程

Key words

internet public opinion / uncertain dynamical system / uncertain process / uncertain differential equation

引用本文

导出引用
苏创 , 彭锦 , 李圣国. 基于不确定微分方程的网络舆情传播模型研究. 系统工程理论与实践, 2015, 35(12): 3201-3209 https://doi.org/10.12011/1000-6788(2015)12-3201
SU Chuang , PENG Jin , LI Sheng-guo. The internet public opinion propagation model via uncertain differential equation. Systems Engineering - Theory & Practice, 2015, 35(12): 3201-3209 https://doi.org/10.12011/1000-6788(2015)12-3201
中图分类号: G353.1   

参考文献

[1] 高承实, 陈越, 荣星, 等. 网络舆情几个基本问题的探讨[J]. 情报杂志, 2011, 30(11): 52-55. Gao Chengshi, Chen Yue, Rong Xing, et al. Some basic problems on network opinion research[J]. Journal of Intelligence, 2011, 30(11): 52-55.
[2] 曾润喜. 网络舆情信息资源共享研究[J]. 情报杂志, 2009, 28(8): 187-191. Zeng Runxi. Research on information resource sharing of network opinion[J]. Journal of Intelligence, 2009, 28(8): 187-191.
[3] 兰月新, 曾润喜. 突发事件网络舆情传播规律与预警阶段研究[J]. 情报杂志, 2013, 32(5): 16-19. Lan Yuexin, Zeng Runxi. Research of emergency network public opinion on propagation model and warning phase[J]. Journal of Intelligence, 2013, 32(5): 16-19.
[4] 杜涛. 网络舆论的演变特征分析[J]. 新闻爱好者, 2005(1): 37.
[5] 王子文, 马静. 网络舆情中的''网络推手"问题研究[J]. 政治学研究, 2011(2): 52-56.
[6] 罗旭. 网络政治参与中的舆论领袖研究:演进与规制[J]. 探索, 2012(4): 188-192.
[7] 陈波, 于泠, 刘君亭, 等. 泛在媒体环境下的网络舆情传播控制模型[J]. 系统工程理论与实践, 2011, 31(11): 2140-2150. Chen Bo, Yu Ling, Liu Junting, et al. Dissemination and control model of internet public opinion in the ubiquitous media environments[J]. Systems Engineering——Theory & Practice, 2011, 31(11): 2140-2150.
[8] 方薇, 何留进, 孙凯, 等. 采用元胞自动机的网络舆情传播模型研究[J]. 计算机应用, 2010, 30(3): 751-755. Fang Wei, He Liujin, Sun Kai, et al. Study on dissemination model of network public sentiment based on cellular automata[J]. Journal of Computer Applications, 2010, 30(3): 751-755.
[9] 王杨, 尤科本, 王梦瑶, 等. 基于博弈论的网络社区舆情传播模型[J]. 计算机应用研究, 2013, 30(8): 2480-2482. Wang Yang, You Keben, Wang Mengyao, et al. Model of network community public opinion spread based on game theory[J]. Application Research of Computers, 2013, 30(8): 2480-2482.
[10] 廖祥文, 曹冬林, 方滨兴, 等. 基于概率推理模型的博客倾向性检索研究[J]. 计算机研究与发展, 2009, 46(9): 1530-1536. Liao Xiangwen, Cao Donglin, Fang Binxing, et al. Research on blog opinion retrieval based on probabilistic inference model[J]. Journal of Computer Research and Development, 2009, 46(9): 1530-1536.
[11] 韩少春, 刘云, 张彦超, 等. 基于动态演化博弈论的舆论传播羊群效应[J]. 系统工程学报, 2011, 26(2): 275-281. Han Shaochun, Liu Yun, Zhang Yanchao, et al. Herd instinct of opinion based on dynamic evolutionary game theory[J]. Journal of Systems Engineering, 2011, 26(2): 275-281.
[12] Java A, Kolari P, Finin T, et al. Modeling the spread of influence on the blogosphere[C]//International Conference on World Wide Web, Edinburgh, Scotland, 2006.
[13] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
[14] Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses[J]. Physical Review E, 2002, 66: 035101-1-035101-2.
[15] 苏创, 彭锦, 李圣国. 国内外网络舆情数学建模研究综述[J]. 情报杂志, 2014, 33(10): 14-21. Su Chuang, Peng Jin, Li Shengguo. A survey on the mathematical modeling of internet public opinion research both at home and abroad[J]. Journal of Intelligence, 2014, 33(10): 14-21.
[16] 梁之舜, 邓集贤, 杨维权, 等. 概率论及数理统计[M]. 第3版(上册). 北京: 高等教育出版社, 2005. Liang Zhishun, Deng Jixian, Yang Weiquan, et al. Probability and statistics[M]. 3rd ed. Beijing: Higher Education Press, 2005.
[17] Liu B. Uncertainty theory[M]. 2nd ed, Berlin: Springer-Verlag, 2007.
[18] Liu B. Uncertainty theory: A branch of mathematics for modeling human uncertainty[M]. Berlin: Springer-Verlag, 2010.
[19] Liu B. Fuzzy process, hybrid process and uncertain process[J]. Journal of Uncertain Systems, 2008, 2(1): 3-16.
[20] Liu B. Some research problems in uncertainty theory[J]. Journal of Uncertain Systems, 2009, 3(1): 3-10.
[21] Chen X, Liu B. Existence and uniqueness theorem for uncertain differential equations[J]. Fuzzy Optimization and Decision Making, 2010, 9(1): 69-81.
[22] Yao K, Gao J, Gao Y. Some stability theorems of uncertain differential equation[J]. Fuzzy Optimization and Decision Making, 2013, 12(1): 3-13.
[23] Yao K, Chen X. A numerical method for solving uncertain differential equations[C]//Proceedings of the 6th Intelligent Computing Conference, HongKong: Globe-Link, 2012: 145-152.
[24] Peng J, Yao K. A new option pricing model for stocks in uncertainty markets[J]. International Journal of Operations Research, 2011, 8(2): 18-26.
[25] Yao K, Qin Z. An uncertain control model with application to production-inventory system[C]//Proceeding of the Twelfth Asia Pacific Industrial Engineering and Management Systems Conference, 2011: 972-977.
[26] 李圣国, 彭锦. 描述不确定动态系统的新工具: 不确定微分方程[J].系统工程学报, 2013, 28(3): 419-426. Li Shengguo, Peng Jin. Uncertain differential equation: A new mathematical tool to describe uncertain dynamic system[J]. Journal of Systems Engineering, 2013, 28(3): 419-426.
[27] 朱明刚. 甘肃兰州自来水苯含量超标事件舆情分析[DB/OL]. http://yuqing.people.com.cn/n/2014/0424/c210114-24939231.html. 2014-4-24.

基金

教育部人文社科研究项目(13YJA630065)
PDF(956 KB)

349

Accesses

0

Citation

Detail

段落导航
相关文章

/