存在中间产品退出的混合型多阶段系统DEA效率评价

马建峰, 何枫

系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (11) : 2874-2884.

PDF(871 KB)
PDF(871 KB)
系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (11) : 2874-2884. DOI: 10.12011/1000-6788(2015)11-2874
论文

存在中间产品退出的混合型多阶段系统DEA效率评价

    马建峰, 何枫
作者信息 +

DEA efficiency evaluation of hybrid multi-stage system with intermediate measure exits

    MA Jian-feng, HE Feng
Author information +
文章历史 +

摘要

具有复杂结构的系统经常会存在初始投入在不同子阶段分配和中间产品非完全再投入并存的现象,在其效率评价中忽略中间过程的传统Data Envelopment Analysis (DEA)模型往往会高估系统效率, 而不考虑中间产品退出情形的网络DEA模型对系统整体效率评价又可能偏低. 为更好测算复杂结构系统的运行效率, 基于企业技术创新的特征, 建立同时考虑投入分配与中间产出分配问题的混合型多阶段系统DEA效率评价模型. 依据分配比例测算各阶段效率, 采用阶段效率的投入加权平均评价的系统整体效率, 并计算模型的最优解. 所提出的模型能够相对准确地反映复杂结构系统的特征, 并深入系统"黑箱"内部, 更大程度地为优化系统效率提供信息. 对我国33个大中型工业企业的行业技术创新效率评价验证了模型的有效性.

Abstract

The assignment of initial input at different sub-stages and the incomplete reentry of intermediate output are often two co-existent phenomena for a system with complex structure. The traditional data envelopment analysis (DEA) models often overvalue system efficiency due to sub-process ignorance;while the network DEA models with the negligence of intermediate outputs exits probably underestimate the efficiency. For a better efficiency evaluation, this paper develops a DEA model for hybrid multi-stage system in consideration of input and intermediate output assignment issues and the system complex structure. The efficiency of sub-stage is evaluated in terms of the allocation proportion, the system overall efficiency is calculated by the input weighted average of sub-stages efficiency, and the optimum solution of the model is given at last. The proposed model can precisely reflect the structural feature of system and provide more valuable information for the system efficiency optimization by opening the "black box". A model application to the technological innovation efficiency evaluation of China's 33 large and medium-sized industrial enterprises by sector is introduced to verify the availability of the model.

关键词

效率评价 / 数据包络分析 / 多阶段系统 / 创新效率

Key words

efficiency evaluation / data envelopment analysis / multi-stage system / innovation efficiency

引用本文

导出引用
马建峰 , 何枫. 存在中间产品退出的混合型多阶段系统DEA效率评价. 系统工程理论与实践, 2015, 35(11): 2874-2884 https://doi.org/10.12011/1000-6788(2015)11-2874
MA Jian-feng , HE Feng. DEA efficiency evaluation of hybrid multi-stage system with intermediate measure exits. Systems Engineering - Theory & Practice, 2015, 35(11): 2874-2884 https://doi.org/10.12011/1000-6788(2015)11-2874
中图分类号: N949   

参考文献

[1] Lewis H F, Sexton T R. Network DEA:Efficiency analysis of organizations with complex internal structure[J]. Computers & Operations Research, 2004, 31:1365-1410.
[2] Fare R, Whittaker G. An intermediate input model of dairy production using complex survey data[J]. Journal of Agricultural Economics, 1995, 46(2):201-213.
[3] Fare R, Grosskopf S. Productivity and intermediate products:A frontier approach[J]. Economics Letters, 1996, 50:65-70.
[4] Fare R, Grosskopf S. Network DEA[J]. Socio-Economic Planning Sciences, 2000, 34:35-49.
[5] Kao C. Efficiency measurement for parallel production systems[J]. European Journal of Operational Research, 2009, 196:1107-1112.
[6] 韩松, 魏权龄. 网络DEA模型的生产理论背景[J]. 经济理论与经济管理, 2012(4):40-44.Han Song, Wei Quanling. The production theory for network DEA[J]. Economic Theory and Business Management, 2012(4):40-44.
[7] Chen Y, Liang L, Zhou J. Equivalence in two-stage DEA approaches[J]. European Journal of Operational Research, 2009, 193:600-604.
[8] 夏琼, 杨锋, 梁樑, 等. 两阶段混联生产系统的DEA效率评价模型[J]. 系统管理学报, 2012, 21(1):1-5.Xia Qiong, Yang Feng, Liang Liang, et al. DEA efficiency evaluation of two-stage parallel-series production systems[J]. Journal of Systems & Management, 2012, 21(1):1-5.
[9] Kao C, Hwang S N. Efficiency decomposition in two-stage data development analysis:An application to non-life insurance companies in Taiwan[J]. European Journal of Operational Research, 2008, 185:418-429.
[10] Yao C, Wade D C, Ning L, et al. Additive efficiency decomposition in two-stage DEA[J]. European Journal of Operational Research, 2009, 196:1170-1176.
[11] 查勇, 梁樑, 许传永. 基于BCC模型的几何平均最优意义下的两阶段合作效率[J]. 系统工程理论与实践, 2008, 28(10):53-59.Zha Yong, Liang Liang, Xu Chuanyong. Two-stage BCC model for cooperative efficiency evaluation using a geometric mean method[J]. Systems Engineering-Theory & Practice, 2008, 28(10):53-59.
[12] Liang L, Cook W D, Zhu J. DEA models for two-stage processes:Game approach and efficiency decomposition[J]. Naval Research Logistics, 2008, 55:643-653.
[13] Lewis H F, Mallikarjun S, Sexton T R. Unoriented two-stage DEA:The case of oscillating intermediate products[J]. European Journal of Operational Research, 2013, 229:529-539.
[14] Sahoo B K, Zhu J, Tone K, et al. Decomposing technical efficiency and scale elasticity in two-stage network DEA[J]. European Journal of Operational Research, 2014, 233:584-594.
[15] 毕功兵, 梁樑, 杨锋. 两阶段生产系统的DEA效率评价模型[J]. 中国管理科学, 2007, 15(2):92-96.Bi Gongbing, Liang Liang, Yang Feng. A DEA-based efficiency-measuring model for a two-stage production system[J]. Chinese Journal of Management Science, 2007, 15(2):92-96.
[16] 雷明, 邓洁, 赵欣娜, 等. 中国寿险业效率评价(2008-2010)——基于组合性两阶段DEA模型[J]. 中国管理科学, 2012, 20:859-864.Lei Ming, Deng Jie, Zhao Xinna, et al. Evaluation of the efficiency of Chinese life insurance industry-Based on combined two-stage DEA model[J]. Chinese Journal of Management Science, 2012, 20:859-864.
[17] 陈凯华, 官建成. 共享投入型关联两阶段生产系统的网络DEA效率测度与分解[J]. 系统工程理论与实践, 2011, 31(7):1211-1221.Chen Kaihua, Guan Jiancheng. Network DEA-based efficiency measurement and decomposition for a relational two-stage production system with shared inputs[J]. Systems Engineering-Theory & Practice, 2011, 31(7):1211-1221.
[18] Chen C M. A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks[J]. European Journal of Operational Research, 2009, 194:687-699.
[19] Lewis H, Sexton T. Network DEA:Efficiency analysis of organization with complex internal structure[J]. Computers and Operations Research, 2004, 31:1365-1410.
[20] Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978(2):429-444.
[21] Charnes A, Cooper WW. Programming with linear fractional functional[J]. Naval Research Logistics Quarterly, 1962, 9(3):181-186.
[22] Chen Y, Liang L, Yang F. A DEA game model approach to supply chain efficiency[J]. Annals of Operations Research, 2006, 145(1):5-13.
[23] Chen Y, Zhou J. Measuring information technology's indirect impact on firm performance[J]. Information Technology & Management Journal, 2004, 5:9-22.
[24] Liang L, Cook W D, Zhu J. DEA model for two-stage processes:Game approach and efficiency decomposition[J]. Naval Research Logistics, 2008, 55:643-653.
[25] 李雄英, 刘南. 基于并联输入阶段的合作DEA方法在外购或自制决策中的应用[J]. 管理工程学报, 2010, 24(4):167-173.Li Xiongying, Liu Nan. Applying the parallel input stages of DEA cooperative model to evaluate the make or buy decision[J]. Journal of Industrial Engineering and Engineering Management, 2010, 24(4):167-173.
[26] 叶胡, 宋伟, 赵嘉茜, 等. 基于两阶段集中式CCR-DEA模型的科技政策绩效评估分析[J]. 中国科技论坛, 2012(12):27-33.Ye Hu, Song Wei, Zhao Jiaqian, et al. Evaluation and analysis of science and technology policy performance on the basis of two-stage centralized CCR-DEA model[J]. Forum on Science and Technology in China, 2012(12):27-33.
[27] 庞瑞芝, 李鹏. 中国工业创新:过程, 效率与模式——基于2001-2008年大中型工业企业的数据[J]. 产业经济研究, 2011(2):1-9.Pang Ruizhi, Li Peng. China's industrial innovation process, efficiency and modes:Based on the data from China's large and medium industrial enterprises in 2001-2008[J]. Industrial Economics Research, 2011(2):1-9.
[28] 杨锋, 翟笃俊, 梁樑, 等. 两阶段链形系统生产可能集与DEA评价模型[J]. 系统工程学报, 2010, 25(3):401-406.Yang Feng, Zhai Dujun, Liang Liang, et al. Production possibility set and DEA evaluation model for two-stage series systems[J]. Journal of Systems Engineering, 2010, 25(3):401-406.

基金

国家自然科学基金(71272160);教育部科技委战略研究重大项目(KJW-A-1410);教育部留学回国人员科研启动基金(第46批)
PDF(871 KB)

399

Accesses

0

Citation

Detail

段落导航
相关文章

/