考虑投资者面临证券市场随机和模糊的双重不确定性,把证券收益率视为随机模糊变量. 根据前景理论建立符合投资者心理特征的期望收益和目标概率隶属度函数,构建目标权重不等的加权极大- 极小随机模糊投资组合模型. 在含有交易费用和最小交易单位约束的摩擦市场环境下,利用改进动态邻居粒子群算法求解投资组合问题. 采用实证方法把市场分为上升和下降两个阶段,研究模型的表现. 结果表明: 加权极大- 极小随机模糊投资组合模型的收益率优于均值-方差投资组合模型; 利用加权极大- 极小随机模糊投资组合模型能够满足不同风险态度投资者的需求,构建与投资者风险态度一致的投资组合.
Abstract
As investors face the uncertainty of randomness and fuzziness simultaneously in stock market, the paper regarded the security returns as random fuzzy variables, and built the membership functions of expected return and target probability in accordance with the investors' psychological trait based on the prospect theory. A weighted max-min random fuzzy portfolio model with unequal target weights was proposed. In frictional market with transaction cost and minimum trading unit constraints, the improved dynamic neighborhood particle swarm optimization was proposed to solve the portfolio problems. Under the rise and decline states of stock market, the performance of the proposed model was empirically studied. The result shows that the proposed model can outperform the mean-variance model, and construct a portfolio which meets the need of investors with different risk-taking attitudes.
关键词
投资组合 /
随机模糊 /
前景理论 /
粒子群算法
{{custom_keyword}} /
Key words
portfolio /
random fuzzy /
prospect theory /
particle swarm optimization
{{custom_keyword}} /
中图分类号:
F832.0
F224.9
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
[2] Vercher E, Bermúdz J D, Segura J V. Fuzzy portfolio optimization under downside risk measures[J]. Fuzzy Sets and Systems, 2007, 158(7): 769-782.
[3] Li X, Qin Z, Kar S. Mean-variance-skewness model for portfolio selection with fuzzy returns[J]. European Journal of Operational Research, 2010, 202(1): 239-247.
[4] 陈国华, 陈收, 房勇, 等. 带有模糊收益率的投资组合选择模型[J]. 系统工程理论与实践, 2009, 29(7): 8-15.Chen Guohua, Chen Shou, Fang Yong, et al. Model for portfolio selection with fuzzy return rates[J]. Systems Engineering-Theory & Practice, 2009, 29(7): 8-15.
[5] Liu B. Theory and practice of uncertain programming[M]. Berlin: Springer-Verlag, 2002.
[6] Liu B. Random fuzzy dependent-chance programming and its hybrid intelligent algorithm[J]. Information Sciences, 2002, 141(3-4): 259-271.
[7] Huang X X. A new perspective for optimal portfolio selection with random fuzzy returns[J]. Information Sciences, 2007, 177(23): 5404-5414.
[8] Hasuike T, Katagiri H, Ishii H. Portfolio selection problems with random fuzzy variable returns[J]. Fuzzy Sets and Systems, 2009, 160(18): 2579-2596.
[9] Oriakhi M W. Heuristic algorithms for the cardinality constrained efficient frontier[J]. European Journal of Operational Research, 2011, 213(3): 538-550.
[10] Deng G F, Lin W T, Lo C C. Markowitz-based portfolio selection with cardinality constraints[J]. Expert Systems with Application, 2012, 39(4): 4558-4566.
[11] Dastkhan H, Gharneh N S, Golmakani H R. A linguistic-based portfolio selection model using weighted max-min operator and hybrid genetic algorithm[J]. Expert Systems with Application, 2011, 38(9): 11735-11743.
[12] Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-292.
[13] Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty[J]. Journal of Risk Uncertainty, 1992, 5(4): 297-232.
[14] Abdellaoui M. Parameter-free elicitation of utility and probability weighting functions[J]. Management Science, 2000, 46(11): 1497-1512.
[15] 刘衍民, 隋常玲, 赵庆祯. 改进的粒子群算法求解Van Genuchten方程参数[J]. 系统工程理论与实践, 2011, 31(3): 512-521.Liu Yanmin, Sui Changling, Zhao Qingzhen. Improved particle swarm optimizer for solving parameters of Van Genuchten model[J]. Systems Engineering-Theory & Practice, 2011, 31(3): 512-521.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(70901017,71271047);中央高校基本科研业务费(N100406003,N130606002)
{{custom_fund}}