基于油液中金属浓度梯度特征的滤波剩余寿命预测模型

张英波, 贾云献, 邱国栋, 黄河, 谷玉波

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (6) : 1620-1625.

PDF(1979 KB)
PDF(1979 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (6) : 1620-1625. DOI: 10.12011/1000-6788(2014)6-1620
论文

基于油液中金属浓度梯度特征的滤波剩余寿命预测模型

    张英波1,4, 贾云献1, 邱国栋2, 黄河3, 谷玉波1
作者信息 +

Stochastic filtering residual useful life prediction model based on metal concentration gradient in lubricant

    ZHANG Ying-bo1,4, JIA Yun-xian1, QIU Guo-dong2, HUANG He3, GU Yu-bo1
Author information +
文章历史 +

摘要

基于随机滤波理论的剩余寿命预测模型是基于状态的维修的重要组成部分. 首先根据设备磨损过程,建立了磨损、金属粒子浓度和剩余寿命三者的函数关系. 进而针对滤波模型基于油液信息进行预测时的局限性,建立了基于油液浓度梯度特征的滤波模型. 此模型无需对监测信息中的换油影响进行线性回归处理,从而减少了误差,并以金属浓度梯度特征建模,完善了状态信息与剩余寿命之间的负相关关系. 然后设计了极大似然参数估计方法,在参数估计过程中考虑了截尾数据对估计值的影响. 最后以某型自行火炮发动机的油液光谱分析数据为例,实现了发动机的剩余寿命预测,结果表明了该模型的可行性和有效性.

Abstract

Residual useful life prediction model based on stochastic filtering is an important part of condition based maintenance. Firstly according to the component wearing process, the functions among wear, metal concentration and residual life were established. Secondly, to the restriction of filtering model when using lubricant analysis data, a filtering model based on metal concentration gradient in lubricant was built up. This prediction model does not need to deal with the oil changes by linear regression, which could influence the lubricant data; thereby some calculation errors are avoided. Another advantage of the model is that the negative correlation between condition data and residual life is more perfect owing to the adoption of metal concentration gradient. Thirdly, a maximum likelihood parameter estimation method was designed, which had considered the truncated data. Finally we took the oil spectral analysis data of a certain artillery engine as an example to carry out the residual useful life prediction of the engine. Results show that the model is practicable and effective.

关键词

剩余寿命 / 滤波模型 / 金属浓度梯度 / 状态信息 / 参数估计

Key words

residual useful life / filtering model / metal concentration gradient / condition information / parameter estimation

引用本文

导出引用
张英波 , 贾云献 , 邱国栋 , 黄河 , 谷玉波. 基于油液中金属浓度梯度特征的滤波剩余寿命预测模型. 系统工程理论与实践, 2014, 34(6): 1620-1625 https://doi.org/10.12011/1000-6788(2014)6-1620
ZHANG Ying-bo , JIA Yun-xian , QIU Guo-dong , HUANG He , GU Yu-bo. Stochastic filtering residual useful life prediction model based on metal concentration gradient in lubricant. Systems Engineering - Theory & Practice, 2014, 34(6): 1620-1625 https://doi.org/10.12011/1000-6788(2014)6-1620
中图分类号: TH17   

参考文献

[1] Jardine A, Banjevic D. Optimization a mine haul truck wheel motors condition monitoring program use for proportional hazards modeling[J]. Journal of Quality in Maintenance Engineering, 2001, 7(4): 286-301.
[2] Jardine A. Optimizing condition based maintenance decisions[C]// 2002 Proceedings Annual Reliability and Maintainability Symposium, 2002: 90-97.
[3] Lin D M, Wiseman M, Banjevic D, et al. An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure[J]. Mechanical Systems and Signal Processing, 2004(5): 993-1007.
[4] Jiang S, Landers T L, Rhoads T R. Semi-parametric proportional intensity models robustness for right-censored recurrent failure data[J]. Reliability Engineering and System Safety, 2005, 90(1): 91-98.
[5] Jiang S, Landers T L, Rhoads T R. Assessment of repairable-system reliability using proportional intensity models: A review[J]. IEEE Transactions on Reliability, 2006, 55(2): 328-336.
[6] Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics[J]. IEEE Transactions on Control Systems Technology, 1996(4): 443-451.
[7] Christer A H, Wang W, Sharp J M. A state space condition monitoring model for furnace erosion prediction and replacement[J]. European Journal of Operational Research, 1997, 101: 1-14.
[8] Wang W, Zhang W. Plant residual time distribution prediction using expert judgments based condition monitoring Information[J]. Condition Monitoring and Diagnostic Engineering Management, 2001: 899-917.
[9] Jia Y X, Wang W. A development of a condition based maintenance model and its prototype software[C]// The 5th International Conference on Reliability, Maintenance and Safety, Dalian, China, 2001: 662-667.
[10] Zhan Y M, Makis V, Jardine A. Adaptive state detection of gearboxes under varying load conditions based on parametric modeling[J]. Mechanical Systems and Signal Processing, 2004, 10: 188-221.
[11] Wang W, Zhang W. A model to predict the residual life of aircraft engines based on oil analysis data[J]. Naval Research Logistics, 2005(3): 276-284.
[12] Wang W, Hussin B. Plant residual time modelling based on observed variables in oil samples[J]. Journal of the Operational Research Society, 2009, 60: 789-796.
[13] 任国全, 郑海起, 张英堂,等. 基于油液分析的自行火炮发动机磨损状态监测研究[J]. 兵工学报, 2002, 23(1): 6-9.Ren Guoquan, Zheng Haiqi, Zhang Yingtang, et al. A study on the monitoring of wearing conditions in engines based on oil analysis[J]. Acta Armamentarii, 2002, 23(1): 6-9.
[14] 邵荷生. 摩擦与磨损[M]. 北京: 北京煤炭工业出版社, 1991.Shao Hesheng. Friction and wear[M]. Beijing: Beijing Coal Industry Publishing Company, 1991.
[15] Wilks S S. Mathematical statistics[M]. Wiley, New York, 1962.
[16] Lawless J F. Statistical models and methods for lifetime data[M]. Wiley, Sons, Canada, 1982.
[17] 陈丽. 基于状态的维修模型及应用研究[D]. 石家庄: 军械工程学院, 2009.Chen Li. Condition based maintenance model and application[D]. Shijiazhuang: Ordnance Engineering College, 2009.
[18] Zhang Y B, Jia Y X, Song X M, et al. A RUL model based on KICA and maximum likelihood estimation with particle filters[C]// The Proceedings of 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Xi'an: University of Electronic Science and Technology of China, 2011: 553-557.

基金

总装重点预研基金(9140A27020308JB34)
PDF(1979 KB)

253

Accesses

0

Citation

Detail

段落导航
相关文章

/