基于ULMADM的智能指挥控制系统决策分配方法

刘跃峰, 陈哨东, 孔繁峨

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (5) : 1339-1344.

PDF(671 KB)
PDF(671 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (5) : 1339-1344. DOI: 10.12011/1000-6788(2014)5-1339
论文

基于ULMADM的智能指挥控制系统决策分配方法

    刘跃峰, 陈哨东, 孔繁峨
作者信息 +

Decision allocation method of intelligent command and control system based on ULMADM

    LIU Yue-feng, CHEN Shao-dong, KONG Fan-e
Author information +
文章历史 +

摘要

在智能指挥控制系统设计中,为了充分发挥指挥员与自动化系统的决策优势,需要将决策功能在两者之间进行合理分配. 给出了指挥控制系统决策分配步骤,针对决策分配过程中属性值无法准确测度的特点,采用不确定性语言型多属性决策(ULMADM)方法,基于UEWAA算子确定决策功能的自动化等级范围,基于UEWAA算子和ULHA算子相结合的多属性群决策算法确定决策功能的自动化等级,算例表明ULMADM方法解决决策分配问题的可行性、有效性和通用性.

Abstract

In order to adequately exert the decision advantages of commander and automation, we need to do decision allocation between them during the design process of intelligent command and control system. The decision allocation process was proposed. For the property values are hard to accurately estimate, we use uncertain linguistic multiple attribute decision making (ULMADM) method to aggregate the property values. UEWAA operator is used to determine the range of automation level. A group decision making method combined with UEWAA operator and ULHA operator is used to determine the automation level. The simulation indicates this method is feasible and effective in decision allocation.

关键词

人机智能系统 / 指挥控制系统 / 功能分配 / 决策分配 / ULMADM方法

Key words

human-machine intelligent system / command and control system / function allocation / decision allocation / ULMADM

引用本文

导出引用
刘跃峰 , 陈哨东 , 孔繁峨. 基于ULMADM的智能指挥控制系统决策分配方法. 系统工程理论与实践, 2014, 34(5): 1339-1344 https://doi.org/10.12011/1000-6788(2014)5-1339
LIU Yue-feng , CHEN Shao-dong , KONG Fan-e. Decision allocation method of intelligent command and control system based on ULMADM. Systems Engineering - Theory & Practice, 2014, 34(5): 1339-1344 https://doi.org/10.12011/1000-6788(2014)5-1339
中图分类号: E844   

参考文献

[1] Gallimore J J, Lucas J R, Narayanan S. Human operator issues for uninhabited aerial vehicles[C]// AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Canada, 2001. AIAA 2001-4192.
[2] Malone T B, Heasly C C. Function allocation: Policy, practice, procedures, & process[J]. Naval Engineers Journal, Spring, 2003: 49-59.
[3] Andy D, Michael H, Peter W. Allocation of function: Scenarios, context and the economics of effort[J]. Human Computer Studies, 2000, 52: 289-318.
[4] Fitts P M. Human engineering for an effective air navigation and traffic control system[M]. Washington DC: National Research Council, 1951.
[5] US Department of Defense. Human engineering procedures guide[Z]. Washington DC: DoD-HDBK-763, 1987.
[6] Parasuraman R, Sheridan T B, Wickens C D. A model for types and levels of human interaction with automation[J]. IEEE Transactions on Systems, Man, and Cybernetics——Part A: Systems and Humans, 2000, 30(3): 286-297.
[7] 周前祥, 姜世忠. 载人航天器系统人机功能分配方法的研究[J]. 中国航天, 2006(6): 30-33. Zhou Qianxiang, Jiang Shizhong. Research on man-machine function allocation of manned spacecraft system[J]. Aerospace China, 2006(6): 30-33.
[8] 龙升照, 黄端生, 陈道木, 等. 人-机-环境系统工程理论与应用基础[M]. 北京: 科学出版社, 2004.Long Shengzhao, Huang Duansheng, Chen Daomu, et al. Base of man-machine-environment system engineering theory and application[M]. Beijing: Science Press, 2004.
[9] Xu Z S. A direct approach to group decision making with uncertain additive linguistic preference relations[R]. Technical Report, 2003.
[10] Xu Z S. An overview of methods for determining OWA weights[J]. International Journal of Intelligent Systems, 2005, 20: 843-865.
[11] 王煜, 徐泽水. OWA算子赋权新方法[J]. 数学的实践与认识, 2008, 38(3): 51-61.Wang Yu, Xu Zeshui. A new method of OWA operator empowerment[J]. Mathematics in Practice and Theory, 2008, 38(3): 51-61.

基金

航空科学基金(2010ZC13012);总装重点实验室基金(9140C460104110C4602)
PDF(671 KB)

Accesses

Citation

Detail

段落导航
相关文章

/