不确定终止时间和通货膨胀影响下风险资产的最优投资策略

姚海祥, 伍慧玲, 曾燕

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (5) : 1089-1099.

PDF(722 KB)
PDF(722 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (5) : 1089-1099. DOI: 10.12011/1000-6788(2014)5-1089
论文

不确定终止时间和通货膨胀影响下风险资产的最优投资策略

    姚海祥1, 伍慧玲2, 曾燕3
作者信息 +

Optimal investment strategy for risky assets under uncertain time-horizon and inflation

    YAO Hai-xiang1, WU Hui-ling2, ZENG Yan3
Author information +
文章历史 +

摘要

本文基于连续时间均值-方差框架,研究了通货膨胀影响下投资终止时间不确定的最优投资组合选择问题. 与以往大多数文献不同,本文所考虑的金融市场仅存在风险资产. 首先构建了含通货膨胀及终止时间不确定因素的风险资产均值-方差投资组合选择模型. 然后利用随机动态规划方法和Lagrange对偶原理得到了有效投资策略及有效边界的解析表达式,并进一步讨论了本文模型的几种特殊情形. 最后,通过数值算例对本文所得结论进行阐述.

Abstract

Based on a continuous-time mean-variance model, this paper considers a portfolio selection problem under inflation when time-horizon is uncertain. Different from most of the existing literature, the financial market considered in this paper consists of only risky assets. First of all, incorporating the uncertain factors of inflation and uncertain time-horizon, a mean-variance portfolio selection model with only risky assets is constructed. Second, closed-form expressions for efficient investment strategy and efficient frontier are derived by employing stochastic dynamic programming and Lagrange dual principle. Third, some special cases are discussed. Finally, a numerical example is provided to illustrate the results obtained in this paper.

关键词

不确定终止时间 / 通货膨胀 / 均值-方差模型 / 最优投资策略 / Hamilton-Jacobi-Bellman方程

Key words

uncertain time-horizon / inflation / mean-variance model / optimal investment strategy / Hamilton-Jacobi-Bellman equation

引用本文

导出引用
姚海祥 , 伍慧玲 , 曾燕. 不确定终止时间和通货膨胀影响下风险资产的最优投资策略. 系统工程理论与实践, 2014, 34(5): 1089-1099 https://doi.org/10.12011/1000-6788(2014)5-1089
YAO Hai-xiang , WU Hui-ling , ZENG Yan. Optimal investment strategy for risky assets under uncertain time-horizon and inflation. Systems Engineering - Theory & Practice, 2014, 34(5): 1089-1099 https://doi.org/10.12011/1000-6788(2014)5-1089
中图分类号: F830.59    F224   

参考文献

[1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
[2] Li D, Ng W L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation[J]. Mathematical Finance, 2000, 10: 387-406.
[3] Zhou X Y, Li D. Continuous-time mean-variance portfolio selection: A stochastic LQ framework[J]. Applied Mathematics Optimization, 2000, 42: 19-33.
[4] Costa O L V, Oliveira A D. Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises[J]. Automatica, 2012, 48: 304-315.
[5] Elliott R J, Siu T K, Badescu A. On mean-variance portfolio selection under a hidden Markovian regime-switching model[J]. Economic Modelling, 2010, 27: 678-686.
[6] Zhu S S, Li D, Wang S Y. Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation[J]. IEEE Transactions on Automatic Control, 2004, 49(3): 447-457.
[7] Bielecki T R, Jin H Q, Pliska S R, et al. Continuous-time mean-variance portfolio selection with bankruptcy prohibition[J]. Mathematical Finance, 2005, 15: 213-244.
[8] Leippold M, Trojani F, Vanini P. A geometric approach to multiperiod mean variance optimization of assets and liabilities[J]. Journal of Economic Dynamics and Control, 2004, 8: 1079-1113.
[9] Chen P, Yang H L. Markowitz's mean-variance asset-liability management with regime switching: A multi-period model[J]. Applied Mathematical Finance, 2011, 18(1): 29-50.
[10] Chiu M C, Li D. Asset and liability management under a continuous-time mean-variance optimization framework[J]. Insurance: Mathematics and Economics, 2006, 39: 330-355.
[11] Chen P, Yang H L, George Y. Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model[J]. Insurance: Mathematics and Economics, 2008, 43: 456-465.
[12] 许云辉,李仲飞.基于收益序列相关的动态投资组合选择——动态均值-方差模型[J].系统工程理论与实践, 2008, 28(8): 123-131.Xu Yunhui, Li Zhongfei. Dynamic portfolio selection based on serially correlated return: Dynamic mean-variance formulation[J]. Systems Engineering——Theory & Practice, 2008, 28(8): 123-131.
[13] 李仲飞, 袁子甲. 参数不确定性下资产配置的动态均值-方差模型[J]. 管理科学学报, 2010, 13(12): 1-9. Li Zhongfei, Yuan Zijia. A dynamic mean-variance model of portfolio selection under parameter uncertainty[J]. Journal of Management Sciences in China, 2010, 13(12): 1-9.
[14] 张初兵, 荣喜民. 均值-方差模型下DC型养老金的随机最优控制[J].系统工程理论与实践, 2012, 32(6): 1314-1323. Zhang Chubing, Rong Ximin. Stochastic optimal control for DC pension under the mean-variance model[J]. Systems Engineering——Theory & Practice, 2012, 32(6): 1314-1323.
[15] Merton R C. Optimal consumption and portfolio rules in a continuous-time model[J]. Journal of Economic Theory, 1971, 3: 373-413.
[16] Christophette B S, Nicole E K, Monique J, et al. Optimal investment decisions when time-horizon is uncertain[J]. Journal of Mathematical Economics, 2008, 44: 1100-1113.
[17] Martellini L, Urosevic B. Static mean-variance analysis with uncertain time horizon[J]. Management Science, 2006, 52: 955-964.
[18] 郭文旌, 胡奇英. 不确定终止时间的多阶段最优投资组合[J]. 管理科学学报, 2005, 8(2): 13-19. Guo Wenjing, Hu Qiying. Multi-period optimization when exit time is uncertain[J]. Journal of Management Sciences in China, 2005, 8(2): 13-19.
[19] Wu H L, Li Z F. Multi-periodmean-variance portfolio selection with Markov regime switching and uncertain time-horizon[J]. Journal of Systems Science and Complexity, 2011, 24: 140-155.
[20] Yi L, Li Z F, Li D. Mutli-period portfolio selection for asset-liability management with uncertain investment horizon[J]. Journal of Industrial and Management Optimization, 2008, 4(3): 535-552.
[21] Li Z F, Xie S X. Mean-variance portfolio optimization under Stochastic income and uncertain exit time[J]. Dynamics of Continuous, Discrete and Impulsive Systems B: Applications and Algorithms, 2010, 17: 131-147.
[22] Campbell J, Viceira L. Strategic asset allocation: Portfolio choice for long-term investors[M]. Oxford University Press, Oxford, 2002.
[23] Brennan M J, Xia Y. Dynamic asset allocation under inflation[J]. The Journal of Finance, 2002, 57(3): 1201-1238.
[24] Jong F D. Pension fund investments and the valuation of liabilities under conditional indexation[J]. Insurance: Mathematics and Economics, 2008, 42: 1-13.
[25] Chou Y Y, Han N W, Hung M W. Optimal portfolio-consumption choice under stochastic inflation with nominal and indexed bonds[J]. Applied Stochastic Models in Business and Industry, 2011, 27: 691-706.
[26] Korn R, Siu T K, Zhang A H. Asset allocation for a DC pension fund under regime switching environment[J]. European Actuarial Journal, 2011, (Suppl2): S361-S377.
[27] Han N W, Hung M W. Optimal asset allocation for DC pension plans under inflation[J]. Insurance: Mathematics and Economics, 2012, 51: 172-181.
[28] Luenberger D G. Optimization by vector space methods[M]. Wiley, New York, 1968.
[29] Fleming W H, Soner H M. Controlled Markov processes and viscosity[M]. Solutions 2ed, Springer, New York, 2006. }

基金

国家自然科学基金青年基金(71201173,11301562);广东省自然科学基金(S2013010011959);广东高等院校学科建设专项资金科技创新项目(2012KJCX0050);全国统计科学研究计划一般项目(2013LY101)
PDF(722 KB)

487

Accesses

0

Citation

Detail

段落导航
相关文章

/