在模糊值函数的解析表达方法未解决之前,模糊值函数的极值问题一直没有被透彻地研究. 在模糊值函数结构元表达的基础上,通过定义模糊数的一种结构序,提出了模糊值函数的伴随函数概念,并证明了在结构序下的模糊值函数极值问题可以转化为其伴随函数的普通极值问题. 同时,提出了模糊值函数的广义极值问题,给出了结构元表述下的模糊值函数广义极值与广义极值点的求解方法. 研究结果不仅丰富了模糊优化理论与方法的研究内容,也为研究模糊运筹学中的优化问题提供了合理且有用的分析工具.
Abstract
Extreme of fuzzy-valued function was not thoroughly researched until we resolved the analytical expression of fuzzy-valued functions, in this paper, based on that the fuzzy-valued function could be expressed by structured element, we present adjoint function of fuzzy-valued function by defining a type of structured sequence of fuzzy numbers, and also prove that the research of extreme of fuzzy-valued function can be transformed into general extreme of its adjoint function under structured sequence. Meanwhile, we not only present the generalized extreme of fuzzy-valued function, but also give the methods for solving the generalized extreme value and generalized extreme points which are formulated by structured element, the research results enrich the research content of fuzzy optimization theory and methods, as well as provide a reasonable and useful analysis tool for studying optimization problem of fuzzy operations research.
关键词
模糊结构元 /
模糊值函数 /
伴随函数 /
结构序极值 /
广义极值
{{custom_keyword}} /
Key words
fuzzy structured element /
fuzzy-valued function /
adjoint function /
structurally sequential extreme /
generalized extreme
{{custom_keyword}} /
中图分类号:
O159
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Zadeh L A. On fuzzy algorithms[C]// Memo UCB/ERL M-325. University of California, Berkeley, 1972.
[2] Tanaka H, Okuda T, Asai K. On fuzzy mathematical programming[J]. Journal of Cybernetics, 1973, 3(4): 37-46.
[3] Orlovsky S A. On programming with fuzzy constraint sets[J]. Kybernetes, 1977, 6(3): 197-201.
[4] Dubois D, Prade H. Operations on fuzzy numbers[J]. International Journal of Systems Science, 1978, 9(6): 613-626.
[5] Dubois D, Prade H. Towards fuzzy differential calculus[J]. Fuzzy Sets and Systems, 1982, 8(1): 1-17; 8(2): 105-116; 8(3): 225-233.
[6] 郭述忠. 区间值函数与模糊数函数的极值问题[J]. 贵州师大数学专集, 1989, 12(2): 43-46.Guo Shuzhong. Extremes of interval value function and fuzzy value function[J]. Album of Guizhou Normal University, 1989, 12(2): 43-46.
[7] Pathak V D, Pirzada U S M. The optimality conditions for single variable fuzzy-valued functions[C]// Computational Intelligence and Multimedia Applications (ICCIMA). Sivakasi, Tamil Nadu: Curran Associates, 2007: 357-363.
[8] Jamison K D, Lodwick W A. Minimizing unconstrained fuzzy functions[J]. Fuzzy Sets and Systems, 1999, 103(3): 457-464.
[9] 吴从#
[5], 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991.Wu Congxin, Ma Ming. Function of fuzzy analyses[M]. Beijing: National Defense Industry Press, 1991.
[10] Wu C X, Wu C. Some notes on the supremum and infimum of the set of fuzzy numbers[J]. Fuzzy Sets and Systems, 1999, 103(1): 183-187.
[11] Wu C X, Wu C. The supremum and infimum of the set of fuzzy numbers and its application[J]. Northeastern Mathematical Journal, 1997, 13(3): 253-256.
[12] 张成, 杨万才. 模糊规划的对偶理论[J]. 辽宁师范大学学报:自然科学版, 2005, 28(1): 1-6.Zhang Cheng, Yang Wancai. Duality theory of fuzzy programming[J]. Journal of Liaoning Normal University: Natural Science Edition, 2005, 28(1): 1-6.
[13] 张成. 模糊凸分析及其在模糊规划中的应用[D]. 大连: 大连理工大学, 2004.Zhang Cheng. Fuzzy convex analysis and its applications to fuzzy programming[D]. Dalian: Dalian University of Technology, 2004.
[14] 毕淑娟, 张晓东. 模糊值函数的收敛性及连续性[J]. 哈尔滨商业大学学报:自然科学版, 2002, 18(3): 330-333.Bi Shujuan, Zhang Xiaodong. Convergence and continuity of fuzzy-valued functions[J]. Journal of Harbin University of Commerce: Natural Science Edition, 2002, 18(3): 330-333.
[15] 马素艳. 模糊凸函数及模糊优化问题[D]. 哈尔滨: 哈尔滨工业大学, 2007.Ma Suyan. Fuzzy convex function and fuzzy optimization problems[D]. Harbin: Harbin Institute of Technology, 2007.
[16] 郭嗣琮. 基于结构元理论的模糊数学分析原理[M]. 沈阳: 东北大学出版社, 2004.Guo Sicong. Principle of fuzzy mathematical analysis based on structured element[M]. Shenyang: Northeastern University Press, 2004.
[17] 郭嗣琮. 模糊实数空间与[-1, 1]上同序单调函数类的同胚[J]. 自然科学进展, 2004, 14(11): 1318-1321.Guo Sicong. Homeomorphic property between fuzzy number space and monotone function with same formal on[-1, 1][J]. Advances in Natural Science, 2004, 14(11): 1318-1321.
[18] 郭嗣琮. 模糊数比较与排序的结构元方法[J]. 系统工程理论与实践, 2009, 29(3): 106-111.Guo Sicong. Comparison and sequencing of fuzzy numbers based on the method of structured element[J]. Systems Engineering —Theory & Practice, 2009, 29(3): 106-111.
[19] 郭嗣琮. 多种模糊值函数微分定义的统一表述[J]. 模糊系统与数学, 2008, 22(3): 116-121.Guo Sicong. Unified definition of differentials of fuzzy-valued functions[J]. Fuzzy Systems and Mathematics, 2008, 22(3): 116-121.
[20] Nanda S, Kar K. Convex fuzzy mappings[J]. Fuzzy Sets and Systems, 1992, 48(1): 129-132.
[21] Panigrahi M, Panda G, Nanda S. Convex fuzzy mapping with differentiability and its application in fuzzy optimization[J]. European Journal of Operational Research, 2008, 185(1): 47-62.
[22] 甘应爱, 田丰, 李维铮, 等. 运筹学[M]. 北京: 清华大学出版社, 2005: 345-351.Gan Yingai, Tian Feng, Li Weizheng, et al. Operations research[M]. Beijing: Tsinghua University Press, 2005: 345-351.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
教育部高校博士学科点专项科研基金(20102121110002)
{{custom_fund}}