本文引入多智能体建模方法,构建了政府、用户、燃气公司、实时监控和人机交互五类智能体,通过智能体的协助与交互模拟由于价格变化所引起的城市天然气管网需求与运营的动态变化过程. 并且以郑州市为例,对工商业用户实施分时定价政策,模拟了该地区天然气管网的运行状态. 结果表明:1)在保证用户和燃气运营商同时获益的情况下,存在一个最优的价格关系能有效降低燃气管网的峰谷负荷差. 2)在峰价格逐渐上调的过程中,工商业用户效益是单调递增的,而燃气运营商的效益是先减少后增加的,即价格上调到一定程度后,燃气运营商才开始获益.
Abstract
This study introduces the multi-agent modeling method to establish five categories of agents, i.e. government agent, customer agent, gas enterprise agent, real time monitoring agent and human-computer interaction agent. Using this multi-agent system, we simulate the dynamic change process of demands and running states caused by the price changes of natural gas in the urban natural gas pipeline network. Moreover, Zhengzhou is taken as a case to simulate the hourly gas-usage behavior of industrial and commercial users under TOU pricing policy. The results show that: 1) An optimal peak-valley price relationship allows both the gas operator and users to benefit at the same time, and the peak-valley load difference can be reduced effectively. 2) With the increase of the peak price, the benefit of industrial and commercial users increases, while the gas operator's benefit decreases firstly and then increases. And only when the peak price reaches a threshold value, the gas operator can benefit.
关键词
城市工商业用户 /
天然气分时定价 /
多智能体仿真 /
削峰填谷
{{custom_keyword}} /
Key words
urban industrial and commercial customer /
natural gas time-of-use pricing /
multi-agent simulation /
load shifting
{{custom_keyword}} /
中图分类号:
TE-9
N945.13
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔民选. 中国能源发展报告(2010)[M]. 北京:社会科学文献出版社, 2009.
[2] 黄赫. 中国"气荒"的价格因素分析[J]. 首都经济贸易大学学报, 2010(2): 109-115.
[3] 曹洪伟. 天然气集输管道调峰优化运行研究[D]. 大庆: 大庆石油学院, 2009.Cao Hongwei. Simulation and optimization of short-term peak shaving scenario for natural gas pipeline network[D]. Daqing: Daqing Petroleum Institute, 2009.
[4] Basu N, Pryor R J, Quint T, et al. A micro-simulation model of the economy[R]. SAND96-2459, Sandia National Laboratories, Albuquerque, 1996.
[5] Cil I, Mala M. A multi-agent architecture for modelling and simulation of small military unit combat in asymmetric warfare[J]. Expert Systems with Applications, 2010, 37(2): 1331-1343.
[6] Norman E. Agent-based modeling: The Santa Fe Institute artificial stock market model revisited[C]//Lecture Notes in Economics and Mathematical Systems, Berlin, 2008.
[7] Barrett C, Beckman R, Berkbigler K. TRANSIMS: Transportation analysis simulation system[R]. Los Alamos National laboratory, 2002.
[8] Türkekul B, Unakitan G. A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture[J]. Energy Policy, 2011, 39(5): 2416-2423.
[9] Dagher L. Natural gas demand at the utility level: An application of dynamic elasticities[J]. Energy Economics, 2012, 34(4): 961-968.
[10] Alberini A, Gans W, Velez-Lopez D. Residential consumption of gas and electricity in the US: The role of prices and income[J]. Energy Economics, 2011, 33(5): 870-881.
[11] Lavín F V, Dale L, Hanemann M, et al. The impact of price on residential demand for electricity and natural gas[J]. Climatic Change, 2011, 109(1): S171-S189.
[12] Aalami H A, Moghaddam M P, Yousefi G R. Modeling and prioritizing demand response programs in power markets[J]. Electric Power Systems Research, 2010, 80(4): 426-435.
[13] Faria P, Vale Z. Demand response in electrical energy supply: An optimal real time pricing approach[J]. Energy, 2011, 36(8): 5374-5384.
[14] Moghaddam M P, Abdollahi A, Rashidinejad M. Flexible demand response programs modeling in competitive electricity markets[J]. Applied Energy, 2011, 88(9): 3257-3269.
[15] Schweppe F C, Caramanis M C, Tabors R D, et al. Spot pricing of electricity[M]. Appendix E: Kluwer Academic Publishers, 1989.
[16] 冯良, 张丹, 王晓庆. 上海天然气市场需求模型构建与计量分析[J]. 天然气工业, 2009(2): 120-122.Feng Liang, Zhang Dan, Wang Xiaoqing. Econometric analysis and modeling on residential demand of natural gas in Shanghai[J]. Natural Gas Industry, 2009(2): 120-122.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71173202)
{{custom_fund}}