单增序列灰色GM(1,1)模型解之间的误差分析

刘军, 肖新平, 郭金海, 毛树华

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (12) : 3182-3189.

PDF(2180 KB)
PDF(2180 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (12) : 3182-3189. DOI: 10.12011/1000-6788(2014)12-3182
论文

单增序列灰色GM(1,1)模型解之间的误差分析

    刘军1,2, 肖新平1, 郭金海1, 毛树华1
作者信息 +

Error analysis between the solutions of GM(1,1) grey models with monotone increasing sequences

    LIU Jun1,2, XIAO Xin-ping1, GUO Jin-hai1, MAO Shu-hua1
Author information +
文章历史 +

摘要

针对单调增长原始数据序列, 文章在理论上讨论白化型与内涵型GM(1,1)(grey forecasting model)模型解之间的相对误差. 在推导出两个模型解之间的相对误差上界表达式的基础上, 作者研究了相对误差上界函数的性质, 讨论了相对误差一致上界关于原始数据序列长度n的单调性. 结果表明当发展系数位于[-1/(n+1),0]内时, 白化型与内涵型GM(1,1)模型解之间的相对误差上界是0.9%,可以合理使用白化模型代替内涵模型; 而发展系数在区间[-2/(n+1),0]内时, 这两个模型解之间的相对误差可能达到8.64%, 此时白化模型代替内涵模型须较谨慎地使用.

Abstract

This paper discusses theoretically the relative error between the solutions of whitenization grey forecasting model (GM(1,1) model) and connotation GM(1,1) model with a monotone increasing raw sequence. The expressions of relative error upper bound between the solutions of these two models are derived first. Then the authors study the properties of the error upper bound function. The investigation indicates that the relative error upper bound between the solutions of GM(1,1,W) and GM(1,1,C) is 0.9% when the developing coefficient is within [-1/(n+1),0] and hence the solution of GM(1,1,C) can be replaced reasonably with that of GM(1,1,W). However the relative error between the solutions of these two models may reach 8.64% when the developing coefficient is in [-2/(n+1),0], and so the solution of GM(1,1,C) only can be replaced very cautiously with that of GM(1,1,W).

关键词

白化型GM(1 / 1)模型 / 内涵型GM(1 / 1)模型 / 相对误差上界 / 发展系数 / 单调增长序列

Key words

whitenization GM(1,1) model / connotation GM(1,1) model / relative error upper bound / developing coefficient / monotone increasing raw sequence

引用本文

导出引用
刘军 , 肖新平 , 郭金海 , 毛树华. 单增序列灰色GM(1,1)模型解之间的误差分析. 系统工程理论与实践, 2014, 34(12): 3182-3189 https://doi.org/10.12011/1000-6788(2014)12-3182
LIU Jun , XIAO Xin-ping , GUO Jin-hai , MAO Shu-hua. Error analysis between the solutions of GM(1,1) grey models with monotone increasing sequences. Systems Engineering - Theory & Practice, 2014, 34(12): 3182-3189 https://doi.org/10.12011/1000-6788(2014)12-3182
中图分类号: O231    N94   

参考文献

[1] 邓聚龙.灰理论基础[M].武汉:华中科技大学出版社, 2002. Deng Julong. The basis of grey theory[M]. Wuhan: Press of Huazhong University of Science and Technology, 2002.
[2] 刘思峰,邓聚龙.GM(1,1)模型的适用范围[J].系统工程理论与实践, 2000, 20(5): 121-124. Liu Sifeng, Deng Julong. The range suitable for GM(1,1)[J]. Systems Engineering - Theory & Practice, 2000, 20(5): 121-124.
[3] Wang Y H, Dang Y G, Li Y Q, et al. An approach to increase prediction precision of GM(1,1) model based on optimization of the initial condition[J]. Expert Systems with Applications, 2010, 37(8): 5640-5644.
[4] 肖新平,宋中民,李峰.灰技术基础及其应用[M].北京:科学出版社, 2005.Xiao Xinping, Song Zhongmin, Li Feng. The foundation of grey technology and its application[M]. Beijing: Science Press, 2005.
[5] Kang X Q, Wei Y. A new optimized method of non-equigap GM(1,1) model[J]. The Journal of Grey System, 2008, 20(4): 375-382.
[6] Xie N M, Liu S F. Discrete grey forecasting model and its optimization[J]. Applied Mathematical Modelling, 2009, 33: 1173-1186.
[7] 刘希强,王树泽,宋中民.灰色关联空间引论[M].贵阳:贵州人民出版社, 1993: 190-193.Liu Xiqiang, Wang Shuze, Song Zhongmin. Introduction to grey related space[M]. Guiyang: Renmin Press of Guizhou, 1993: 190-193.
[8] Xu J, Tan T, Tu M, et al. Improvement of grey models by least squares[J]. Expert Systems with Applications, 2011, 38: 13961-13966.
[9] Wu L F, Liu S F, Yao L G, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 1775-1785.
[10] 周伟,方志耕,刘思峰.基于级比优化的广义GM(1,1)预测模型[J].系统工程理论与实践, 2010, 30(8): 1433-1438.Zhou Wei, Fang Zhigeng, Liu Sifeng. Generalized GM(1,1) forecast model based on the optimized level ratio[J]. Systems Engineering - Theory & Practice, 2010, 30(8): 1433-1438.
[11] Lin Y H, Lee P C, Chang T P. Adaptive and high-precision grey forecasting model[J]. Expert Systems with Applications, 2009, 36: 9658-9662.
[12] 王叶梅, 党耀国, 王正新. 非等间距GM(1,1)模型背景值的优化[J]. 中国管理科学, 2008, 16(4): 159-162.Wang Yemei, Dang Yaoguo, Wang Zhengxin. The optimization of background value in non-equidistant GM(1,1) model[J]. Chinese Journal of Management Science, 2008, 16(4): 159-162.
[13] 刘思峰, 党耀国, 方志耕,等. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2010: 146-198. Liu Sifeng, Dang Yaoguo, Fang Zhigeng, et al. Grey system theory and its application[M]. Beijing: Science Press, 2010: 146-198.

基金

国家自然科学基金(70971103);国家教育部高等学校博士学科点专项科研基金(20120143110001);教育部人文社会科学专项科研基金(11YJC630155)
PDF(2180 KB)

288

Accesses

0

Citation

Detail

段落导航
相关文章

/